file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Monotonic.HyperHeap.fsti
FStar.Monotonic.HyperHeap.disjoint
val disjoint (i j: rid) : GTot bool
val disjoint (i j: rid) : GTot bool
let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i)
{ "file_name": "ulib/FStar.Monotonic.HyperHeap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 64, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.HyperHeap module Set = FStar.Set module Map = FStar.Map open FStar.Monotonic.Heap open FStar.Ghost (* * This module provides the map view of the memory and associated functions and lemmas * The intention of this module is for it to be included in HyperStack * Clients should not open/know about HyperHeap, they should work only with HyperStack *) (* * AR: mark it must_erase_for_extraction temporarily until CMI comes in *) [@@must_erase_for_extraction] val rid :eqtype val reveal (r:rid) :GTot (list (int * int)) let rid_last_component (r:rid) :GTot int = let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r) val color (x:rid) :GTot int val rid_freeable (x:rid) : GTot bool type hmap = Map.t rid heap val root : r:rid{color r == 0 /\ not (rid_freeable r)} val root_last_component (_:unit) : Lemma (rid_last_component root == 0) let root_has_color_zero (u:unit) :Lemma (color root == 0) = () val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root)) private val rid_length (r:rid) :GTot nat private val rid_tail (r:rid{rid_length r > 0}) :rid val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.HyperHeap.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic.Heap", "short_module": null }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "Map" }, { "abbrev": true, "full_module": "FStar.Set", "short_module": "Set" }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: FStar.Monotonic.HyperHeap.rid -> j: FStar.Monotonic.HyperHeap.rid -> Prims.GTot Prims.bool
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.Monotonic.HyperHeap.includes", "Prims.bool" ]
[]
false
false
false
false
false
let disjoint (i j: rid) : GTot bool =
not (includes i j) && not (includes j i)
false
FStar.Monotonic.HyperHeap.fsti
FStar.Monotonic.HyperHeap.modifies_one
val modifies_one : r: FStar.Monotonic.HyperHeap.rid -> m0: FStar.Monotonic.HyperHeap.hmap -> m1: FStar.Monotonic.HyperHeap.hmap -> Prims.logical
let modifies_one (r:rid) (m0:hmap) (m1:hmap) = modifies_just (Set.singleton r) m0 m1
{ "file_name": "ulib/FStar.Monotonic.HyperHeap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 118, "start_col": 0, "start_line": 118 }
(* Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.HyperHeap module Set = FStar.Set module Map = FStar.Map open FStar.Monotonic.Heap open FStar.Ghost (* * This module provides the map view of the memory and associated functions and lemmas * The intention of this module is for it to be included in HyperStack * Clients should not open/know about HyperHeap, they should work only with HyperStack *) (* * AR: mark it must_erase_for_extraction temporarily until CMI comes in *) [@@must_erase_for_extraction] val rid :eqtype val reveal (r:rid) :GTot (list (int * int)) let rid_last_component (r:rid) :GTot int = let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r) val color (x:rid) :GTot int val rid_freeable (x:rid) : GTot bool type hmap = Map.t rid heap val root : r:rid{color r == 0 /\ not (rid_freeable r)} val root_last_component (_:unit) : Lemma (rid_last_component root == 0) let root_has_color_zero (u:unit) :Lemma (color root == 0) = () val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root)) private val rid_length (r:rid) :GTot nat private val rid_tail (r:rid{rid_length r > 0}) :rid val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2)) let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i) val lemma_disjoint_includes (i:rid) (j:rid) (k:rid) :Lemma (requires (disjoint i j /\ includes j k)) (ensures (disjoint i k)) (decreases (List.Tot.length (reveal k))) [SMTPat (disjoint i j); SMTPat (includes j k)] val extends (i:rid) (j:rid) :GTot bool val parent (r:rid{r =!= root}) :rid val lemma_includes_refl (i:rid) :Lemma (includes i i) [SMTPat (includes i i)] val lemma_extends_includes (i:rid) (j:rid) :Lemma (requires (extends j i)) (ensures (includes i j /\ not(includes j i))) [SMTPat (extends j i)] val lemma_includes_anti_symmetric (i:rid) (j:rid) :Lemma (requires (includes i j /\ i =!= j)) (ensures (not (includes j i))) [SMTPat (includes i j)] val lemma_extends_disjoint (i:rid) (j:rid) (k:rid) :Lemma (requires (extends j i /\ extends k i /\ j =!= k)) (ensures (disjoint j k)) val lemma_extends_parent (i:rid{i =!= root}) :Lemma (extends i (parent i)) [SMTPat (parent i)] val lemma_extends_not_root (i:rid) (j:rid{extends j i}) :Lemma (j =!= root) [SMTPat (extends j i)] val lemma_extends_only_parent (i:rid) (j:rid{extends j i}) :Lemma (i == parent j) [SMTPat (extends j i)] val mod_set (s:Set.set rid) :(Set.set rid) assume Mod_set_def: forall (x:rid) (s:Set.set rid). {:pattern Set.mem x (mod_set s)} Set.mem x (mod_set s) <==> (exists (y:rid). Set.mem y s /\ includes y x) let modifies (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_just (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement s) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.HyperHeap.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic.Heap", "short_module": null }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "Map" }, { "abbrev": true, "full_module": "FStar.Set", "short_module": "Set" }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> m0: FStar.Monotonic.HyperHeap.hmap -> m1: FStar.Monotonic.HyperHeap.hmap -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperHeap.hmap", "FStar.Monotonic.HyperHeap.modifies_just", "FStar.Set.singleton", "Prims.logical" ]
[]
false
false
false
true
true
let modifies_one (r: rid) (m0 m1: hmap) =
modifies_just (Set.singleton r) m0 m1
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum_case_injective
val synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))]
val synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))]
let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z )
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 742, "start_col": 0, "start_line": 727 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> x: LowParse.Spec.BitSum.bitsum'_type b -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Combinators.synth_injective (SynthCase?.f synth_case x)) [SMTPat (LowParse.Spec.Combinators.synth_injective (SynthCase?.f synth_case x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Combinators.synth_injective_intro'", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "LowParse.Spec.BitSum.__proj__SynthCase__item__f_inj", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.Combinators.synth_injective", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] =
synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z)
false
FStar.Monotonic.HyperHeap.fsti
FStar.Monotonic.HyperHeap.equal_on
val equal_on : s: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> m0: FStar.Monotonic.HyperHeap.hmap -> m1: FStar.Monotonic.HyperHeap.hmap -> Prims.logical
let equal_on (s:Set.set rid) (m0:hmap) (m1:hmap) = (forall (r:rid). {:pattern (Map.contains m0 r)} (Set.mem r (mod_set s) /\ Map.contains m0 r) ==> Map.contains m1 r) /\ Map.equal m1 (Map.concat m1 (Map.restrict (mod_set s) m0))
{ "file_name": "ulib/FStar.Monotonic.HyperHeap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 122, "start_col": 0, "start_line": 120 }
(* Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.HyperHeap module Set = FStar.Set module Map = FStar.Map open FStar.Monotonic.Heap open FStar.Ghost (* * This module provides the map view of the memory and associated functions and lemmas * The intention of this module is for it to be included in HyperStack * Clients should not open/know about HyperHeap, they should work only with HyperStack *) (* * AR: mark it must_erase_for_extraction temporarily until CMI comes in *) [@@must_erase_for_extraction] val rid :eqtype val reveal (r:rid) :GTot (list (int * int)) let rid_last_component (r:rid) :GTot int = let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r) val color (x:rid) :GTot int val rid_freeable (x:rid) : GTot bool type hmap = Map.t rid heap val root : r:rid{color r == 0 /\ not (rid_freeable r)} val root_last_component (_:unit) : Lemma (rid_last_component root == 0) let root_has_color_zero (u:unit) :Lemma (color root == 0) = () val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root)) private val rid_length (r:rid) :GTot nat private val rid_tail (r:rid{rid_length r > 0}) :rid val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2)) let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i) val lemma_disjoint_includes (i:rid) (j:rid) (k:rid) :Lemma (requires (disjoint i j /\ includes j k)) (ensures (disjoint i k)) (decreases (List.Tot.length (reveal k))) [SMTPat (disjoint i j); SMTPat (includes j k)] val extends (i:rid) (j:rid) :GTot bool val parent (r:rid{r =!= root}) :rid val lemma_includes_refl (i:rid) :Lemma (includes i i) [SMTPat (includes i i)] val lemma_extends_includes (i:rid) (j:rid) :Lemma (requires (extends j i)) (ensures (includes i j /\ not(includes j i))) [SMTPat (extends j i)] val lemma_includes_anti_symmetric (i:rid) (j:rid) :Lemma (requires (includes i j /\ i =!= j)) (ensures (not (includes j i))) [SMTPat (includes i j)] val lemma_extends_disjoint (i:rid) (j:rid) (k:rid) :Lemma (requires (extends j i /\ extends k i /\ j =!= k)) (ensures (disjoint j k)) val lemma_extends_parent (i:rid{i =!= root}) :Lemma (extends i (parent i)) [SMTPat (parent i)] val lemma_extends_not_root (i:rid) (j:rid{extends j i}) :Lemma (j =!= root) [SMTPat (extends j i)] val lemma_extends_only_parent (i:rid) (j:rid{extends j i}) :Lemma (i == parent j) [SMTPat (extends j i)] val mod_set (s:Set.set rid) :(Set.set rid) assume Mod_set_def: forall (x:rid) (s:Set.set rid). {:pattern Set.mem x (mod_set s)} Set.mem x (mod_set s) <==> (exists (y:rid). Set.mem y s /\ includes y x) let modifies (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_just (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement s) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_one (r:rid) (m0:hmap) (m1:hmap) = modifies_just (Set.singleton r) m0 m1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.HyperHeap.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic.Heap", "short_module": null }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "Map" }, { "abbrev": true, "full_module": "FStar.Set", "short_module": "Set" }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> m0: FStar.Monotonic.HyperHeap.hmap -> m1: FStar.Monotonic.HyperHeap.hmap -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Set.set", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperHeap.hmap", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "FStar.Set.mem", "FStar.Monotonic.HyperHeap.mod_set", "FStar.Map.contains", "FStar.Monotonic.Heap.heap", "FStar.Map.equal", "FStar.Map.concat", "FStar.Map.restrict", "Prims.logical" ]
[]
false
false
false
true
true
let equal_on (s: Set.set rid) (m0 m1: hmap) =
(forall (r: rid). {:pattern (Map.contains m0 r)} (Set.mem r (mod_set s) /\ Map.contains m0 r) ==> Map.contains m1 r) /\ Map.equal m1 (Map.concat m1 (Map.restrict (mod_set s) m0))
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_case_g_f_eq
val synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x)
val synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x)
let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 31, "end_line": 676, "start_col": 0, "start_line": 662 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> k: LowParse.Spec.BitSum.bitsum'_type b -> x: type_of_tag (LowParse.Spec.BitSum.bitsum'_key_of_t b k) -> FStar.Pervasives.Lemma (ensures SynthCase?.g s k (SynthCase?.f s k x) == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.BitSum.__proj__SynthCase__item__f_inj", "LowParse.Spec.BitSum.__proj__SynthCase__item__g", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "Prims.unit", "LowParse.Spec.BitSum.__proj__SynthCase__item__f_g_eq", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) =
s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum_alt_2
val serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes
val serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes
let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 77, "end_line": 1046, "start_col": 0, "start_line": 1028 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> s: LowParse.Spec.Base.serializer p { Mkparser_kind'?.parser_kind_subkind kt == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> tg: LowParse.Spec.BitSum.bitsum'_type b -> payload: type_of_tag (LowParse.Spec.BitSum.bitsum'_key_of_t b tg) -> Prims.GTot LowParse.Bytes.bytes
Prims.GTot
[ "sometrivial" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.dtuple2", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.BitSum.bitsum'_key_of_t", "FStar.Seq.Base.append", "LowParse.Bytes.byte", "LowParse.Spec.Base.serialize", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Bytes.bytes" ]
[]
false
false
false
false
false
let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes =
let k = bitsum'_key_of_t b tg in (serialize s (synth_bitsum'_recip b tg)) `Seq.append` (serialize (g k) payload)
false
FStar.Monotonic.HyperHeap.fsti
FStar.Monotonic.HyperHeap.rid_last_component
val rid_last_component (r: rid) : GTot int
val rid_last_component (r: rid) : GTot int
let rid_last_component (r:rid) :GTot int = let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r)
{ "file_name": "ulib/FStar.Monotonic.HyperHeap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 42, "start_col": 0, "start_line": 38 }
(* Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.HyperHeap module Set = FStar.Set module Map = FStar.Map open FStar.Monotonic.Heap open FStar.Ghost (* * This module provides the map view of the memory and associated functions and lemmas * The intention of this module is for it to be included in HyperStack * Clients should not open/know about HyperHeap, they should work only with HyperStack *) (* * AR: mark it must_erase_for_extraction temporarily until CMI comes in *) [@@must_erase_for_extraction] val rid :eqtype val reveal (r:rid) :GTot (list (int * int))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.HyperHeap.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic.Heap", "short_module": null }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "Map" }, { "abbrev": true, "full_module": "FStar.Set", "short_module": "Set" }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> Prims.GTot Prims.int
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.tuple2", "Prims.bool", "FStar.Pervasives.Native.snd", "FStar.List.Tot.Base.hd", "Prims.list", "FStar.Monotonic.HyperHeap.reveal" ]
[]
false
false
false
false
false
let rid_last_component (r: rid) : GTot int =
let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r)
false
FStar.Monotonic.HyperHeap.fsti
FStar.Monotonic.HyperHeap.disjoint_regions
val disjoint_regions : s1: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> s2: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> Prims.logical
let disjoint_regions (s1:Set.set rid) (s2:Set.set rid) = forall x y. {:pattern (Set.mem x s1); (Set.mem y s2)} (Set.mem x s1 /\ Set.mem y s2) ==> disjoint x y
{ "file_name": "ulib/FStar.Monotonic.HyperHeap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 106, "end_line": 164, "start_col": 0, "start_line": 163 }
(* Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.HyperHeap module Set = FStar.Set module Map = FStar.Map open FStar.Monotonic.Heap open FStar.Ghost (* * This module provides the map view of the memory and associated functions and lemmas * The intention of this module is for it to be included in HyperStack * Clients should not open/know about HyperHeap, they should work only with HyperStack *) (* * AR: mark it must_erase_for_extraction temporarily until CMI comes in *) [@@must_erase_for_extraction] val rid :eqtype val reveal (r:rid) :GTot (list (int * int)) let rid_last_component (r:rid) :GTot int = let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r) val color (x:rid) :GTot int val rid_freeable (x:rid) : GTot bool type hmap = Map.t rid heap val root : r:rid{color r == 0 /\ not (rid_freeable r)} val root_last_component (_:unit) : Lemma (rid_last_component root == 0) let root_has_color_zero (u:unit) :Lemma (color root == 0) = () val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root)) private val rid_length (r:rid) :GTot nat private val rid_tail (r:rid{rid_length r > 0}) :rid val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2)) let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i) val lemma_disjoint_includes (i:rid) (j:rid) (k:rid) :Lemma (requires (disjoint i j /\ includes j k)) (ensures (disjoint i k)) (decreases (List.Tot.length (reveal k))) [SMTPat (disjoint i j); SMTPat (includes j k)] val extends (i:rid) (j:rid) :GTot bool val parent (r:rid{r =!= root}) :rid val lemma_includes_refl (i:rid) :Lemma (includes i i) [SMTPat (includes i i)] val lemma_extends_includes (i:rid) (j:rid) :Lemma (requires (extends j i)) (ensures (includes i j /\ not(includes j i))) [SMTPat (extends j i)] val lemma_includes_anti_symmetric (i:rid) (j:rid) :Lemma (requires (includes i j /\ i =!= j)) (ensures (not (includes j i))) [SMTPat (includes i j)] val lemma_extends_disjoint (i:rid) (j:rid) (k:rid) :Lemma (requires (extends j i /\ extends k i /\ j =!= k)) (ensures (disjoint j k)) val lemma_extends_parent (i:rid{i =!= root}) :Lemma (extends i (parent i)) [SMTPat (parent i)] val lemma_extends_not_root (i:rid) (j:rid{extends j i}) :Lemma (j =!= root) [SMTPat (extends j i)] val lemma_extends_only_parent (i:rid) (j:rid{extends j i}) :Lemma (i == parent j) [SMTPat (extends j i)] val mod_set (s:Set.set rid) :(Set.set rid) assume Mod_set_def: forall (x:rid) (s:Set.set rid). {:pattern Set.mem x (mod_set s)} Set.mem x (mod_set s) <==> (exists (y:rid). Set.mem y s /\ includes y x) let modifies (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_just (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement s) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_one (r:rid) (m0:hmap) (m1:hmap) = modifies_just (Set.singleton r) m0 m1 let equal_on (s:Set.set rid) (m0:hmap) (m1:hmap) = (forall (r:rid). {:pattern (Map.contains m0 r)} (Set.mem r (mod_set s) /\ Map.contains m0 r) ==> Map.contains m1 r) /\ Map.equal m1 (Map.concat m1 (Map.restrict (mod_set s) m0)) let lemma_modifies_just_trans (m1:hmap) (m2:hmap) (m3:hmap) (s1:Set.set rid) (s2:Set.set rid) :Lemma (requires (modifies_just s1 m1 m2 /\ modifies_just s2 m2 m3)) (ensures (modifies_just (Set.union s1 s2) m1 m3)) = () let lemma_modifies_trans (m1:hmap) (m2:hmap) (m3:hmap) (s1:Set.set rid) (s2:Set.set rid) :Lemma (requires (modifies s1 m1 m2 /\ modifies s2 m2 m3)) (ensures (modifies (Set.union s1 s2) m1 m3)) = () val lemma_includes_trans (i:rid) (j:rid) (k:rid) :Lemma (requires (includes i j /\ includes j k)) (ensures (includes i k)) (decreases (reveal k)) [SMTPat (includes i j); SMTPat (includes j k)] val lemma_modset (i:rid) (j:rid) :Lemma (requires (includes j i)) (ensures (Set.subset (mod_set (Set.singleton i)) (mod_set (Set.singleton j)))) val lemma_modifies_includes (m1:hmap) (m2:hmap) (i:rid) (j:rid) :Lemma (requires (modifies (Set.singleton i) m1 m2 /\ includes j i)) (ensures (modifies (Set.singleton j) m1 m2)) val lemma_modifies_includes2 (m1:hmap) (m2:hmap) (s1:Set.set rid) (s2:Set.set rid) :Lemma (requires (modifies s1 m1 m2 /\ (forall x. Set.mem x s1 ==> (exists y. Set.mem y s2 /\ includes y x)))) (ensures (modifies s2 m1 m2)) val lemma_disjoint_parents (pr:rid) (r:rid) (ps:rid) (s:rid) :Lemma (requires (r `extends` pr /\ s `extends` ps /\ disjoint pr ps)) (ensures (disjoint r s)) [SMTPat (extends r pr); SMTPat (extends s ps); SMTPat (disjoint pr ps)] val lemma_include_cons (i:rid) (j:rid) :Lemma (requires (i =!= j /\ includes i j)) (ensures (j =!= root))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.HyperHeap.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic.Heap", "short_module": null }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "Map" }, { "abbrev": true, "full_module": "FStar.Set", "short_module": "Set" }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> s2: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Set.set", "FStar.Monotonic.HyperHeap.rid", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "FStar.Set.mem", "FStar.Monotonic.HyperHeap.disjoint", "Prims.logical" ]
[]
false
false
false
true
true
let disjoint_regions (s1 s2: Set.set rid) =
forall x y. {:pattern (Set.mem x s1); (Set.mem y s2)} (Set.mem x s1 /\ Set.mem y s2) ==> disjoint x y
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.parse_bitsum_cases
val parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
val parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 90, "end_line": 758, "start_col": 0, "start_line": 744 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) -> x: LowParse.Spec.BitSum.bitsum'_type b -> LowParse.Spec.Base.parser (LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind b type_of_tag f) (LowParse.Spec.Base.refine_with_tag tag_of_data x)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.weaken", "LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "LowParse.Spec.BitSum.bitsum'_key_of_t" ]
[]
false
false
false
false
false
let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) =
let tg:bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_ , p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` (synth_case.f x))
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum_eq'
val serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x)
val serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x)
let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 64, "end_line": 1026, "start_col": 0, "start_line": 1009 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> s: LowParse.Spec.Base.serializer p { Mkparser_kind'?.parser_kind_subkind kt == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> x: data -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitSum.serialize_bitsum b tag_of_data type_of_tag synth_case s g x == LowParse.Spec.BitSum.serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.dtuple2", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.BitSum.serialize_bitsum_eq", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Bytes.bytes", "LowParse.Spec.BitSum.serialize_bitsum", "LowParse.Spec.BitSum.serialize_bitsum_alt", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) =
serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum_case_recip_inverse
val synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))]
val synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))]
let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y )
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 892, "start_col": 0, "start_line": 877 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> x: LowParse.Spec.BitSum.bitsum'_type b -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Combinators.synth_inverse (SynthCase?.f synth_case x) (SynthCase?.g synth_case x)) [ SMTPat (LowParse.Spec.Combinators.synth_inverse (SynthCase?.f synth_case x) (SynthCase?.g synth_case x)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Combinators.synth_inverse_intro'", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "LowParse.Spec.BitSum.__proj__SynthCase__item__g", "LowParse.Spec.BitSum.__proj__SynthCase__item__f_g_eq", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.Combinators.synth_inverse", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] =
synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.parse_bitsum_eq
val parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2)))
val parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2)))
let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x))
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 44, "end_line": 839, "start_col": 0, "start_line": 798 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> p: LowParse.Spec.Base.parser kt t -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) -> x: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match LowParse.Spec.Base.parse (LowParse.Spec.BitSum.parse_bitsum' b p) x with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ tg consumed1) -> let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in (match LowParse.Spec.Base.parse (FStar.Pervasives.dsnd (f k)) (FStar.Seq.Base.slice x consumed1 (FStar.Seq.Base.length x)) with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed2) -> FStar.Pervasives.Native.Some (SynthCase?.f synth_case tg y, consumed1 + consumed2)) <: FStar.Pervasives.Native.option (data * LowParse.Spec.Base.consumed_length x)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "Prims.dtuple2", "LowParse.Bytes.bytes", "LowParse.Spec.Base.parse", "LowParse.Spec.BitSum.parse_bitsum'", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Combinators.parse_synth_eq", "Prims.__proj__Mkdtuple2__item___1", "LowParse.Spec.Base.refine_with_tag", "FStar.Pervasives.dsnd", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "FStar.Seq.Base.slice", "LowParse.Bytes.byte", "FStar.Seq.Base.length", "Prims.unit", "LowParse.Spec.BitSum.synth_bitsum_case_injective", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.Combinators.parse_tagged_union_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind", "LowParse.Spec.BitSum.parse_bitsum_cases", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitSum.parse_bitsum", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2))) =
parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x))
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum_alt
val serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : GTot bytes
val serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : GTot bytes
let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 79, "end_line": 965, "start_col": 0, "start_line": 945 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> s: LowParse.Spec.Base.serializer p { Mkparser_kind'?.parser_kind_subkind kt == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> x: data -> Prims.GTot LowParse.Bytes.bytes
Prims.GTot
[ "sometrivial" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.dtuple2", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "FStar.Seq.Base.append", "LowParse.Bytes.byte", "LowParse.Spec.Base.serialize", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.BitSum.__proj__SynthCase__item__g", "LowParse.Bytes.bytes" ]
[]
false
false
false
false
false
let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : GTot bytes =
let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in (serialize s (synth_bitsum'_recip b tg)) `Seq.append` (serialize (g k) payload)
false
StaticAssertions.fst
StaticAssertions.empty_static_asserts
val empty_static_asserts : StaticAssertions.static_asserts
let empty_static_asserts = { includes = []; sizeof_assertions = [] }
{ "file_name": "src/3d/StaticAssertions.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 36, "start_col": 0, "start_line": 33 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module StaticAssertions open FStar.All open Ast module B = Binding noeq type sizeof_assertion = { type_name : ident; size : int } noeq type static_asserts = { includes : list string; sizeof_assertions : list sizeof_assertion }
{ "checked_file": "/", "dependencies": [ "TypeSizes.fsti.checked", "prims.fst.checked", "Options.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "StaticAssertions.fst" }
[ { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
StaticAssertions.static_asserts
Prims.Tot
[ "total" ]
[]
[ "StaticAssertions.Mkstatic_asserts", "Prims.Nil", "Prims.string", "StaticAssertions.sizeof_assertion" ]
[]
false
false
false
true
false
let empty_static_asserts =
{ includes = []; sizeof_assertions = [] }
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum_cases
val serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x))
val serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x))
let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ())
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 9, "end_line": 917, "start_col": 0, "start_line": 894 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> x: LowParse.Spec.BitSum.bitsum'_type b -> LowParse.Spec.Base.serializer (LowParse.Spec.BitSum.parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.serialize_weaken", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.BitSum.__proj__SynthCase__item__g", "Prims.unit", "LowParse.Spec.BitSum.synth_bitsum_case_recip_inverse", "LowParse.Spec.BitSum.synth_bitsum_case_injective", "LowParse.Spec.BitSum.parse_bitsum_cases", "LowParse.Spec.BitSum.bitsum'_key_of_t" ]
[]
false
false
false
false
false
let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) =
let tg = bitsum'_key_of_t b x in let (| _ , p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ())
false
FStar.Monotonic.HyperHeap.fsti
FStar.Monotonic.HyperHeap.extend_post
val extend_post (r: rid) (n c: int) (freeable: bool) : pure_post rid
val extend_post (r: rid) (n c: int) (freeable: bool) : pure_post rid
let extend_post (r:rid) (n:int) (c:int) (freeable:bool) : pure_post rid = fun s -> s `extends` r /\ Cons? (reveal s) /\ Cons?.hd (reveal s) == (c, n) /\ color s == c /\ rid_freeable s == freeable
{ "file_name": "ulib/FStar.Monotonic.HyperHeap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 186, "start_col": 0, "start_line": 180 }
(* Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.HyperHeap module Set = FStar.Set module Map = FStar.Map open FStar.Monotonic.Heap open FStar.Ghost (* * This module provides the map view of the memory and associated functions and lemmas * The intention of this module is for it to be included in HyperStack * Clients should not open/know about HyperHeap, they should work only with HyperStack *) (* * AR: mark it must_erase_for_extraction temporarily until CMI comes in *) [@@must_erase_for_extraction] val rid :eqtype val reveal (r:rid) :GTot (list (int * int)) let rid_last_component (r:rid) :GTot int = let open FStar.List.Tot in let r = reveal r in if length r = 0 then 0 else snd (hd r) val color (x:rid) :GTot int val rid_freeable (x:rid) : GTot bool type hmap = Map.t rid heap val root : r:rid{color r == 0 /\ not (rid_freeable r)} val root_last_component (_:unit) : Lemma (rid_last_component root == 0) let root_has_color_zero (u:unit) :Lemma (color root == 0) = () val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root)) private val rid_length (r:rid) :GTot nat private val rid_tail (r:rid{rid_length r > 0}) :rid val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2)) let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i) val lemma_disjoint_includes (i:rid) (j:rid) (k:rid) :Lemma (requires (disjoint i j /\ includes j k)) (ensures (disjoint i k)) (decreases (List.Tot.length (reveal k))) [SMTPat (disjoint i j); SMTPat (includes j k)] val extends (i:rid) (j:rid) :GTot bool val parent (r:rid{r =!= root}) :rid val lemma_includes_refl (i:rid) :Lemma (includes i i) [SMTPat (includes i i)] val lemma_extends_includes (i:rid) (j:rid) :Lemma (requires (extends j i)) (ensures (includes i j /\ not(includes j i))) [SMTPat (extends j i)] val lemma_includes_anti_symmetric (i:rid) (j:rid) :Lemma (requires (includes i j /\ i =!= j)) (ensures (not (includes j i))) [SMTPat (includes i j)] val lemma_extends_disjoint (i:rid) (j:rid) (k:rid) :Lemma (requires (extends j i /\ extends k i /\ j =!= k)) (ensures (disjoint j k)) val lemma_extends_parent (i:rid{i =!= root}) :Lemma (extends i (parent i)) [SMTPat (parent i)] val lemma_extends_not_root (i:rid) (j:rid{extends j i}) :Lemma (j =!= root) [SMTPat (extends j i)] val lemma_extends_only_parent (i:rid) (j:rid{extends j i}) :Lemma (i == parent j) [SMTPat (extends j i)] val mod_set (s:Set.set rid) :(Set.set rid) assume Mod_set_def: forall (x:rid) (s:Set.set rid). {:pattern Set.mem x (mod_set s)} Set.mem x (mod_set s) <==> (exists (y:rid). Set.mem y s /\ includes y x) let modifies (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_just (s:Set.set rid) (m0:hmap) (m1:hmap) = Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement s) m0)) /\ Set.subset (Map.domain m0) (Map.domain m1) let modifies_one (r:rid) (m0:hmap) (m1:hmap) = modifies_just (Set.singleton r) m0 m1 let equal_on (s:Set.set rid) (m0:hmap) (m1:hmap) = (forall (r:rid). {:pattern (Map.contains m0 r)} (Set.mem r (mod_set s) /\ Map.contains m0 r) ==> Map.contains m1 r) /\ Map.equal m1 (Map.concat m1 (Map.restrict (mod_set s) m0)) let lemma_modifies_just_trans (m1:hmap) (m2:hmap) (m3:hmap) (s1:Set.set rid) (s2:Set.set rid) :Lemma (requires (modifies_just s1 m1 m2 /\ modifies_just s2 m2 m3)) (ensures (modifies_just (Set.union s1 s2) m1 m3)) = () let lemma_modifies_trans (m1:hmap) (m2:hmap) (m3:hmap) (s1:Set.set rid) (s2:Set.set rid) :Lemma (requires (modifies s1 m1 m2 /\ modifies s2 m2 m3)) (ensures (modifies (Set.union s1 s2) m1 m3)) = () val lemma_includes_trans (i:rid) (j:rid) (k:rid) :Lemma (requires (includes i j /\ includes j k)) (ensures (includes i k)) (decreases (reveal k)) [SMTPat (includes i j); SMTPat (includes j k)] val lemma_modset (i:rid) (j:rid) :Lemma (requires (includes j i)) (ensures (Set.subset (mod_set (Set.singleton i)) (mod_set (Set.singleton j)))) val lemma_modifies_includes (m1:hmap) (m2:hmap) (i:rid) (j:rid) :Lemma (requires (modifies (Set.singleton i) m1 m2 /\ includes j i)) (ensures (modifies (Set.singleton j) m1 m2)) val lemma_modifies_includes2 (m1:hmap) (m2:hmap) (s1:Set.set rid) (s2:Set.set rid) :Lemma (requires (modifies s1 m1 m2 /\ (forall x. Set.mem x s1 ==> (exists y. Set.mem y s2 /\ includes y x)))) (ensures (modifies s2 m1 m2)) val lemma_disjoint_parents (pr:rid) (r:rid) (ps:rid) (s:rid) :Lemma (requires (r `extends` pr /\ s `extends` ps /\ disjoint pr ps)) (ensures (disjoint r s)) [SMTPat (extends r pr); SMTPat (extends s ps); SMTPat (disjoint pr ps)] val lemma_include_cons (i:rid) (j:rid) :Lemma (requires (i =!= j /\ includes i j)) (ensures (j =!= root)) let disjoint_regions (s1:Set.set rid) (s2:Set.set rid) = forall x y. {:pattern (Set.mem x s1); (Set.mem y s2)} (Set.mem x s1 /\ Set.mem y s2) ==> disjoint x y val extends_parent (tip:rid{tip =!= root}) (r:rid) :Lemma (extends r (parent tip) /\ r =!= tip ==> disjoint r tip \/ extends r tip) [SMTPat (extends r (parent tip))] val includes_child (tip:rid{tip =!= root}) (r:rid) :Lemma (includes r tip ==> r == tip \/ includes r (parent tip)) [SMTPat (includes r (parent tip))] val root_is_root (s:rid) :Lemma (requires (includes s root)) (ensures (s == root)) [SMTPat (includes s root)]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.HyperHeap.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic.Heap", "short_module": null }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "Map" }, { "abbrev": true, "full_module": "FStar.Set", "short_module": "Set" }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> n: Prims.int -> c: Prims.int -> freeable: Prims.bool -> Prims.pure_post FStar.Monotonic.HyperHeap.rid
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.int", "Prims.bool", "Prims.l_True", "Prims.l_and", "Prims.b2t", "FStar.Monotonic.HyperHeap.extends", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.HyperHeap.reveal", "Prims.eq2", "Prims.__proj__Cons__item__hd", "FStar.Pervasives.Native.Mktuple2", "FStar.Monotonic.HyperHeap.color", "FStar.Monotonic.HyperHeap.rid_freeable", "Prims.pure_post" ]
[]
false
false
false
true
false
let extend_post (r: rid) (n c: int) (freeable: bool) : pure_post rid =
fun s -> s `extends` r /\ Cons? (reveal s) /\ Cons?.hd (reveal s) == (c, n) /\ color s == c /\ rid_freeable s == freeable
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum
val serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f))
val serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f))
let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 70, "end_line": 943, "start_col": 0, "start_line": 919 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> s: LowParse.Spec.Base.serializer p { Mkparser_kind'?.parser_kind_subkind kt == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> LowParse.Spec.Base.serializer (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.dtuple2", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.serialize_tagged_union", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BitSum.parse_bitsum'", "LowParse.Spec.BitSum.serialize_bitsum'", "LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind", "LowParse.Spec.BitSum.parse_bitsum_cases", "LowParse.Spec.BitSum.serialize_bitsum_cases", "LowParse.Spec.BitSum.parse_bitsum_kind", "LowParse.Spec.BitSum.parse_bitsum" ]
[]
false
false
false
false
false
let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) =
serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
false
StaticAssertions.fst
StaticAssertions.no_static_asserts
val no_static_asserts (sas: static_asserts) : Tot bool
val no_static_asserts (sas: static_asserts) : Tot bool
let no_static_asserts (sas: static_asserts) : Tot bool = Nil? sas.includes && Nil? sas.sizeof_assertions
{ "file_name": "src/3d/StaticAssertions.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 28, "end_line": 75, "start_col": 0, "start_line": 73 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module StaticAssertions open FStar.All open Ast module B = Binding noeq type sizeof_assertion = { type_name : ident; size : int } noeq type static_asserts = { includes : list string; sizeof_assertions : list sizeof_assertion } let empty_static_asserts = { includes = []; sizeof_assertions = [] } let compute_static_asserts (benv:B.global_env) (senv:TypeSizes.size_env) (r:option type_refinement) : ML static_asserts = let env = B.mk_env benv, senv in match r with | None -> empty_static_asserts | Some r -> let sizeof_assertions = r.type_map |> List.map (fun (i, jopt) -> let j = match jopt with | None -> i | Some j -> j in let t_j = with_dummy_range (Type_app j KindSpec []) in match TypeSizes.size_of_typ env t_j with | TypeSizes.Fixed n | TypeSizes.WithVariableSuffix n -> { type_name = i; size = n } | _ -> Ast.error (Printf.sprintf "Type %s is variable sized and cannot refine a C type %s" (ident_to_string j) (ident_to_string i)) i.range) in { includes = r.Ast.includes; sizeof_assertions = sizeof_assertions }
{ "checked_file": "/", "dependencies": [ "TypeSizes.fsti.checked", "prims.fst.checked", "Options.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "StaticAssertions.fst" }
[ { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sas: StaticAssertions.static_asserts -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "StaticAssertions.static_asserts", "Prims.op_AmpAmp", "Prims.uu___is_Nil", "Prims.string", "StaticAssertions.__proj__Mkstatic_asserts__item__includes", "StaticAssertions.sizeof_assertion", "StaticAssertions.__proj__Mkstatic_asserts__item__sizeof_assertions", "Prims.bool" ]
[]
false
false
false
true
false
let no_static_asserts (sas: static_asserts) : Tot bool =
Nil? sas.includes && Nil? sas.sizeof_assertions
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum_eq
val serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
val serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 1007, "start_col": 0, "start_line": 967 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> s: LowParse.Spec.Base.serializer p { Mkparser_kind'?.parser_kind_subkind kt == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> x: data -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.serialize (LowParse.Spec.BitSum.serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == LowParse.Spec.BitSum.serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.dtuple2", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.serialize_synth_eq", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "LowParse.Spec.BitSum.__proj__SynthCase__item__g", "Prims.unit", "LowParse.Spec.BitSum.serialize_bitsum'_eq", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.Combinators.serialize_tagged_union_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BitSum.parse_bitsum'", "LowParse.Spec.BitSum.serialize_bitsum'", "LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind", "LowParse.Spec.BitSum.parse_bitsum_cases", "LowParse.Spec.BitSum.serialize_bitsum_cases", "Prims.l_True", "Prims.squash", "LowParse.Bytes.bytes", "LowParse.Spec.Base.serialize", "LowParse.Spec.BitSum.parse_bitsum_kind", "LowParse.Spec.BitSum.parse_bitsum", "LowParse.Spec.BitSum.serialize_bitsum", "LowParse.Spec.BitSum.serialize_bitsum_alt", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) =
serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _ , p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x
false
StaticAssertions.fst
StaticAssertions.has_static_asserts
val has_static_asserts (sas: static_asserts) : Tot bool
val has_static_asserts (sas: static_asserts) : Tot bool
let has_static_asserts (sas: static_asserts) : Tot bool = not (no_static_asserts sas)
{ "file_name": "src/3d/StaticAssertions.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 29, "end_line": 78, "start_col": 0, "start_line": 77 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module StaticAssertions open FStar.All open Ast module B = Binding noeq type sizeof_assertion = { type_name : ident; size : int } noeq type static_asserts = { includes : list string; sizeof_assertions : list sizeof_assertion } let empty_static_asserts = { includes = []; sizeof_assertions = [] } let compute_static_asserts (benv:B.global_env) (senv:TypeSizes.size_env) (r:option type_refinement) : ML static_asserts = let env = B.mk_env benv, senv in match r with | None -> empty_static_asserts | Some r -> let sizeof_assertions = r.type_map |> List.map (fun (i, jopt) -> let j = match jopt with | None -> i | Some j -> j in let t_j = with_dummy_range (Type_app j KindSpec []) in match TypeSizes.size_of_typ env t_j with | TypeSizes.Fixed n | TypeSizes.WithVariableSuffix n -> { type_name = i; size = n } | _ -> Ast.error (Printf.sprintf "Type %s is variable sized and cannot refine a C type %s" (ident_to_string j) (ident_to_string i)) i.range) in { includes = r.Ast.includes; sizeof_assertions = sizeof_assertions } let no_static_asserts (sas: static_asserts) : Tot bool = Nil? sas.includes && Nil? sas.sizeof_assertions
{ "checked_file": "/", "dependencies": [ "TypeSizes.fsti.checked", "prims.fst.checked", "Options.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "StaticAssertions.fst" }
[ { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sas: StaticAssertions.static_asserts -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "StaticAssertions.static_asserts", "Prims.op_Negation", "StaticAssertions.no_static_asserts", "Prims.bool" ]
[]
false
false
false
true
false
let has_static_asserts (sas: static_asserts) : Tot bool =
not (no_static_asserts sas)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.serialize_bitsum_eq_2
val serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload)
val serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload)
let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 41, "end_line": 1067, "start_col": 0, "start_line": 1048 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> s: LowParse.Spec.Base.serializer p { Mkparser_kind'?.parser_kind_subkind kt == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> g: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) -> tg: LowParse.Spec.BitSum.bitsum'_type b -> payload: type_of_tag (LowParse.Spec.BitSum.bitsum'_key_of_t b tg) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitSum.serialize_bitsum b tag_of_data type_of_tag synth_case s g (SynthCase?.f synth_case tg payload) == LowParse.Spec.BitSum.serialize_bitsum_alt_2 b tag_of_data type_of_tag synth_case s g tg payload)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.dtuple2", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.BitSum.synth_case_g_f_eq", "Prims.unit", "LowParse.Spec.BitSum.serialize_bitsum_eq", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "Prims.l_True", "Prims.squash", "LowParse.Bytes.bytes", "LowParse.Spec.BitSum.serialize_bitsum", "LowParse.Spec.BitSum.serialize_bitsum_alt_2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p {kt.parser_kind_subkind == Some ParserStrong}) (#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x))))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) =
serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.filter_bitsum'_bitsum'_intro
val filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload))
val filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload))
let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 12, "end_line": 1157, "start_col": 0, "start_line": 1144 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x })
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> phi: LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e -> LowParse.Spec.BitSum.filter_bitsum'_t (LowParse.Spec.BitSum.BitSum' key key_size e payload)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "Prims.bool", "Prims.eq2", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitSum'", "LowParse.Spec.BitSum.filter_bitsum'_t" ]
[]
false
false
false
false
false
let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) =
fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr
false
StaticAssertions.fst
StaticAssertions.print_static_asserts
val print_static_asserts (sas: static_asserts) : ML string
val print_static_asserts (sas: static_asserts) : ML string
let print_static_asserts (sas:static_asserts) : ML string = let includes = sas.includes |> List.map (fun i -> Printf.sprintf "#include \"%s\"" i) |> String.concat "\n" in let sizeof_assertions = sas.sizeof_assertions |> List.map (fun sa -> Printf.sprintf "C_ASSERT(sizeof(%s) == %d);" (ident_to_string sa.type_name) sa.size) |> String.concat "\n" in Options.make_includes () ^ includes ^ "\n" ^ sizeof_assertions
{ "file_name": "src/3d/StaticAssertions.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 39, "end_line": 93, "start_col": 0, "start_line": 80 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module StaticAssertions open FStar.All open Ast module B = Binding noeq type sizeof_assertion = { type_name : ident; size : int } noeq type static_asserts = { includes : list string; sizeof_assertions : list sizeof_assertion } let empty_static_asserts = { includes = []; sizeof_assertions = [] } let compute_static_asserts (benv:B.global_env) (senv:TypeSizes.size_env) (r:option type_refinement) : ML static_asserts = let env = B.mk_env benv, senv in match r with | None -> empty_static_asserts | Some r -> let sizeof_assertions = r.type_map |> List.map (fun (i, jopt) -> let j = match jopt with | None -> i | Some j -> j in let t_j = with_dummy_range (Type_app j KindSpec []) in match TypeSizes.size_of_typ env t_j with | TypeSizes.Fixed n | TypeSizes.WithVariableSuffix n -> { type_name = i; size = n } | _ -> Ast.error (Printf.sprintf "Type %s is variable sized and cannot refine a C type %s" (ident_to_string j) (ident_to_string i)) i.range) in { includes = r.Ast.includes; sizeof_assertions = sizeof_assertions } let no_static_asserts (sas: static_asserts) : Tot bool = Nil? sas.includes && Nil? sas.sizeof_assertions let has_static_asserts (sas: static_asserts) : Tot bool = not (no_static_asserts sas)
{ "checked_file": "/", "dependencies": [ "TypeSizes.fsti.checked", "prims.fst.checked", "Options.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "StaticAssertions.fst" }
[ { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sas: StaticAssertions.static_asserts -> FStar.All.ML Prims.string
FStar.All.ML
[ "ml" ]
[]
[ "StaticAssertions.static_asserts", "Prims.op_Hat", "Prims.string", "Options.make_includes", "FStar.String.concat", "Prims.list", "FStar.List.map", "StaticAssertions.sizeof_assertion", "FStar.Printf.sprintf", "Ast.ident_to_string", "StaticAssertions.__proj__Mksizeof_assertion__item__type_name", "StaticAssertions.__proj__Mksizeof_assertion__item__size", "StaticAssertions.__proj__Mkstatic_asserts__item__sizeof_assertions", "StaticAssertions.__proj__Mkstatic_asserts__item__includes" ]
[]
false
true
false
false
false
let print_static_asserts (sas: static_asserts) : ML string =
let includes = sas.includes |> List.map (fun i -> Printf.sprintf "#include \"%s\"" i) |> String.concat "\n" in let sizeof_assertions = sas.sizeof_assertions |> List.map (fun sa -> Printf.sprintf "C_ASSERT(sizeof(%s) == %d);" (ident_to_string sa.type_name) sa.size) |> String.concat "\n" in Options.make_includes () ^ includes ^ "\n" ^ sizeof_assertions
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind'
val weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b -> Tot parser_kind)) : Tot (k': parser_kind & (x: bitsum'_key_type b -> Lemma (k' `is_weaker_than` (f x)))) (decreases (bitsum'_size))
val weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b -> Tot parser_kind)) : Tot (k': parser_kind & (x: bitsum'_key_type b -> Lemma (k' `is_weaker_than` (f x)))) (decreases (bitsum'_size))
let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 8, "end_line": 713, "start_col": 0, "start_line": 680 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> LowParse.Spec.Base.parser_kind) -> Prims.Tot (Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k' -> x: LowParse.Spec.BitSum.bitsum'_key_type b -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.is_weaker_than k' (f x))))
Prims.Tot
[ "total", "" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.Base.parser_kind", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.Mkdtuple2", "Prims.unit", "Prims.l_True", "LowParse.Spec.Base.is_weaker_than", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.Spec.BitSum.bitsum'_key_type_intro_BitField", "LowParse.Spec.BitSum.BitField", "LowParse.Spec.BitSum.bitsum'_key_type_elim_BitField", "Prims.dtuple2", "LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind'", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.BitSum'", "FStar.Pervasives.dsnd", "FStar.Pervasives.dfst", "LowParse.Spec.BitSum.bitsum'_key_type_elim_BitSum'", "LowParse.Spec.Base.glb_list_of", "FStar.List.Tot.Base.mem", "LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum'", "Prims._assert", "Prims.bool", "LowParse.Spec.Base.default_parser_kind", "Prims.list", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst" ]
[ "recursion" ]
false
false
false
false
false
let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b -> Tot parser_kind)) : Tot (k': parser_kind & (x: bitsum'_key_type b -> Lemma (k' `is_weaker_than` (f x)))) (decreases (bitsum'_size)) =
match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g , phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys:list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & (y: bitsum'_key_type b -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` (f y))))) = if List.Tot.mem x keys then let (| k , g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1 , y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1 , y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y) |)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.filter_bitsum'_bitfield
val filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest))
val filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest))
let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 16, "end_line": 1101, "start_col": 0, "start_line": 1092 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} -> rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) -> phi: LowParse.Spec.BitSum.filter_bitsum'_t rest -> LowParse.Spec.BitSum.filter_bitsum'_t (LowParse.Spec.BitSum.BitField sz rest)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Spec.BitSum.filter_bitsum'_t", "Prims.bool", "Prims.eq2", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitField" ]
[]
false
false
false
false
false
let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) =
fun x -> phi x
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.filter_bitsum'_bitsum_gen
val filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: (x: bitfield cl key_size -> Tot (y: bool{y == list_mem x (list_map snd e)}))) (key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x}))) (destr_payload: (k: enum_key e -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload))
val filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: (x: bitfield cl key_size -> Tot (y: bool{y == list_mem x (list_map snd e)}))) (key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x}))) (destr_payload: (k: enum_key e -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload))
let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 1123, "start_col": 0, "start_line": 1104 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> is_valid_repr: (x: LowParse.BitFields.bitfield cl key_size -> y: Prims.bool { y == LowParse.Spec.Enum.list_mem x (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.snd e) }) -> key_of: (x: LowParse.Spec.Enum.enum_repr e -> y: LowParse.Spec.Enum.enum_key e {y == LowParse.Spec.Enum.enum_key_of_repr e x}) -> destr_payload: (k: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.filter_bitsum'_t (payload k)) -> LowParse.Spec.BitSum.filter_bitsum'_t (LowParse.Spec.BitSum.BitSum' key key_size e payload)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.bool", "Prims.eq2", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.enum_repr", "LowParse.Spec.Enum.enum_key_of_repr", "LowParse.Spec.BitSum.filter_bitsum'_t", "Prims.op_Negation", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitSum'", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield" ]
[]
false
false
false
false
false
let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: (x: bitfield cl key_size -> Tot (y: bool{y == list_mem x (list_map snd e)}))) (key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x}))) (destr_payload: (k: enum_key e -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) =
fun x -> let r:bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.parse_bitsum_eq'
val parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) else None))
val parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) else None))
let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 40, "end_line": 875, "start_col": 0, "start_line": 843 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> p: LowParse.Spec.Base.parser kt t -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) -> x: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match LowParse.Spec.Base.parse p x with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ tg' consumed1) -> (match LowParse.Spec.BitSum.filter_bitsum' b tg' with | true -> let tg = LowParse.Spec.BitSum.synth_bitsum' b tg' in let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in (match LowParse.Spec.Base.parse (FStar.Pervasives.dsnd (f k)) (FStar.Seq.Base.slice x consumed1 (FStar.Seq.Base.length x)) with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed2) -> FStar.Pervasives.Native.Some (SynthCase?.f synth_case tg y, consumed1 + consumed2) ) <: FStar.Pervasives.Native.option (data * LowParse.Spec.Base.consumed_length x) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (data * LowParse.Spec.Base.consumed_length x)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "Prims.dtuple2", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_filter_eq", "LowParse.Spec.BitSum.filter_bitsum'", "Prims.unit", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.BitSum.synth_bitsum'", "LowParse.Spec.BitSum.synth_bitsum'_injective", "LowParse.Spec.BitSum.parse_bitsum_eq", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.BitSum.parse_bitsum", "FStar.Pervasives.Native.None", "FStar.Pervasives.dsnd", "FStar.Seq.Base.slice", "LowParse.Bytes.byte", "FStar.Seq.Base.length", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "Prims.op_Addition", "LowParse.Spec.BitSum.bitsum'_key_of_t", "Prims.bool", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) else None)) =
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` (filter_bitsum' b)) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elem_a
val generate_elem_a : t: Type0 -> a: Type0 -> max: Prims.nat -> i: Prims.nat{i <= max} -> Type0
let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i}
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 13, "start_col": 0, "start_line": 13 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Type0 -> a: Type0 -> max: Prims.nat -> i: Prims.nat{i <= max} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length" ]
[]
false
false
false
false
true
let generate_elem_a (t a: Type0) (max: nat) (i: nat{i <= max}) =
a & s: seq t {length s == i}
false
EverParse3d.Kinds.fsti
EverParse3d.Kinds.kind_unit
val kind_unit:parser_kind false WeakKindStrongPrefix
val kind_unit:parser_kind false WeakKindStrongPrefix
let kind_unit : parser_kind false WeakKindStrongPrefix = ret_kind
{ "file_name": "src/3d/prelude/EverParse3d.Kinds.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 10, "end_line": 124, "start_col": 0, "start_line": 122 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Kinds noextract type weak_kind = | WeakKindWeak | WeakKindStrongPrefix | WeakKindConsumesAll inline_for_extraction noextract let weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind = if k1 = k2 then k1 else WeakKindWeak inline_for_extraction noextract val parser_kind (nz:bool) (wk: weak_kind) : Type0 inline_for_extraction noextract val glb (#nz1:bool) (#wk1: weak_kind) (k1:parser_kind nz1 wk1) (#nz2:bool) (#wk2: weak_kind) (k2:parser_kind nz2 wk2) : parser_kind (nz1 && nz2) (weak_kind_glb wk1 wk2) /// Parser: return inline_for_extraction noextract val ret_kind : parser_kind false WeakKindStrongPrefix /// Parser: bind inline_for_extraction noextract val and_then_kind (#nz1:_) (k1:parser_kind nz1 WeakKindStrongPrefix) (#nz2:_) (#wk2: _) (k2:parser_kind nz2 wk2) : parser_kind (nz1 || nz2) wk2 inline_for_extraction noextract val filter_kind (#nz:_) (#wk: _) (k:parser_kind nz wk) : parser_kind nz wk inline_for_extraction noextract val impos_kind : parser_kind true WeakKindStrongPrefix /// Lists/arrays inline_for_extraction noextract val kind_nlist : parser_kind false WeakKindStrongPrefix val kind_all_bytes : parser_kind false WeakKindConsumesAll val kind_t_at_most : parser_kind false WeakKindStrongPrefix val kind_t_exact : parser_kind false WeakKindStrongPrefix val parse_string_kind : parser_kind true WeakKindStrongPrefix val kind_all_zeros : parser_kind false WeakKindConsumesAll inline_for_extraction noextract val kind____UINT8 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT8BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT16BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT32BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT64BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT16 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT32 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT64 : parser_kind true WeakKindStrongPrefix
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverParse3d.Kinds.fsti" }
[ { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverParse3d.Kinds.parser_kind false EverParse3d.Kinds.WeakKindStrongPrefix
Prims.Tot
[ "total" ]
[]
[ "EverParse3d.Kinds.ret_kind" ]
[]
false
false
false
false
false
let kind_unit:parser_kind false WeakKindStrongPrefix =
ret_kind
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elems4_a
val generate_elems4_a : t: Type0 -> a: Type0 -> max: Prims.nat -> i: Prims.nat{i <= max / 4} -> Type0
let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i}
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 106, "end_line": 74, "start_col": 0, "start_line": 74 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Type0 -> a: Type0 -> max: Prims.nat -> i: Prims.nat{i <= max / 4} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star" ]
[]
false
false
false
false
true
let generate_elems4_a (t a: Type0) (max: nat) (i: nat{i <= max / 4}) =
a & s: seq t {length s == 4 * i}
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.mk_filter_bitsum'_bitsum'_t'
val mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;0;l2])
val mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;0;l2])
let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 102, "end_line": 1267, "start_col": 0, "start_line": 1227 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} -> Prims.Tot (LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2)
Prims.Tot
[ "total", "" ]
[ "mk_filter_bitsum'_t'", "mk_filter_bitsum'_bitsum'_t'" ]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_nil", "Prims.unit", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_cons", "LowParse.Spec.BitSum.mk_filter_bitsum'_t'", "LowParse.Spec.BitSum.mk_filter_bitsum'_bitsum'_t'", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "FStar.List.Tot.Properties.append_assoc", "LowParse.Spec.Enum.enum_repr_of_key_append_cons", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t", "LowParse.Spec.BitSum.bitsum_wellfoundedness", "LowParse.Spec.BitSum.BitSum'" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;0;l2]) =
bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@@ inline_let ]let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
false
Spec.Agile.HMAC.fst
Spec.Agile.HMAC.xor
val xor (x: uint8) (v: bytes) : lbytes (Seq.length v)
val xor (x: uint8) (v: bytes) : lbytes (Seq.length v)
let xor (x: uint8) (v: bytes) : lbytes (Seq.length v) = Spec.Loops.seq_map (logxor x) v
{ "file_name": "specs/Spec.Agile.HMAC.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 18, "start_col": 0, "start_line": 17 }
module Spec.Agile.HMAC open Spec.Hash.Definitions open Lib.IntTypes #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" let wrap (a: fixed_len_alg) (key: bytes{Seq.length key `less_than_max_input_length` a}) : lbytes (block_length a) = let key0 = if Seq.length key <= block_length a then key else Spec.Agile.Hash.hash a key in let paddingLength = block_length a - Seq.length key0 in Seq.append key0 (Seq.create paddingLength (u8 0))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Spec.Agile.HMAC.fst" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint8 -> v: Spec.Hash.Definitions.bytes -> Spec.Agile.HMAC.lbytes (FStar.Seq.Base.length v)
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.uint8", "Spec.Hash.Definitions.bytes", "Spec.Loops.seq_map", "Lib.IntTypes.logxor", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Agile.HMAC.lbytes", "FStar.Seq.Base.length" ]
[]
false
false
false
false
false
let xor (x: uint8) (v: bytes) : lbytes (Seq.length v) =
Spec.Loops.seq_map (logxor x) v
false
EverParse3d.Kinds.fsti
EverParse3d.Kinds.weak_kind_glb
val weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind
val weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind
let weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind = if k1 = k2 then k1 else WeakKindWeak
{ "file_name": "src/3d/prelude/EverParse3d.Kinds.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 19, "end_line": 32, "start_col": 0, "start_line": 27 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Kinds noextract type weak_kind = | WeakKindWeak | WeakKindStrongPrefix | WeakKindConsumesAll inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverParse3d.Kinds.fsti" }
[ { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k1: EverParse3d.Kinds.weak_kind -> k2: EverParse3d.Kinds.weak_kind -> EverParse3d.Kinds.weak_kind
Prims.Tot
[ "total" ]
[]
[ "EverParse3d.Kinds.weak_kind", "Prims.op_Equality", "Prims.bool", "EverParse3d.Kinds.WeakKindWeak" ]
[]
false
false
false
true
false
let weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind =
if k1 = k2 then k1 else WeakKindWeak
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.mk_filter_bitsum'_t'
val mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b;1;()])
val mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b;1;()])
let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 102, "end_line": 1267, "start_col": 0, "start_line": 1227 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> Prims.Tot (LowParse.Spec.BitSum.filter_bitsum'_t b)
Prims.Tot
[ "total", "" ]
[ "mk_filter_bitsum'_t'", "mk_filter_bitsum'_bitsum'_t'" ]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "Prims.squash", "Prims.eq2", "Prims.int", "LowParse.Spec.BitSum.filter_bitsum'_bitstop", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.Spec.BitSum.filter_bitsum'_bitfield", "LowParse.Spec.BitSum.mk_filter_bitsum'_t'", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_intro", "LowParse.Spec.BitSum.mk_filter_bitsum'_bitsum'_t'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitSum.filter_bitsum'_t" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b;1;()]) =
match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.destr_bitsum'_bitsum_t
val destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (Type u#(a + 1))
val destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (Type u#(a + 1))
let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x))
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 60, "end_line": 1370, "start_col": 0, "start_line": 1354 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.BitSum'", "FStar.Ghost.erased", "LowParse.Spec.BitSum.if_combinator_weak", "FStar.Ghost.reveal", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "Prims.l_not", "LowParse.Spec.Enum.list_mem", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.snd", "LowParse.Spec.BitSum.synth_bitsum'" ]
[]
false
false
false
false
true
let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (Type u#(a + 1)) =
u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a)) -> u_if: (x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload)) -> Tot (if_combinator_weak (u (Ghost.reveal x)))) -> f: (x: bitsum'_type (BitSum' key key_size e payload) -> Tot (u x)) -> x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~(list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) } -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x))
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.filter_bitsum'_bitsum'_nil
val filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e [])
val filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e [])
let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 1171, "start_col": 0, "start_line": 1160 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> h: Prims.squash (e == e @ []) -> LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.squash", "Prims.eq2", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.append", "Prims.Nil", "Prims.l_not", "LowParse.Spec.Enum.list_mem", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.snd", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "Prims.bool", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitSum'", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t" ]
[]
false
false
false
false
false
let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) =
(fun x xr -> false)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.filter_bitsum'_bitsum'_cons
val filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
val filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 28, "end_line": 1213, "start_col": 0, "start_line": 1174 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> k: key -> r: LowParse.BitFields.bitfield cl key_size -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) { e == l1 @ (k, r) :: l2 /\ LowParse.Spec.Enum.list_mem k (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\ LowParse.Spec.Enum.enum_repr_of_key e k == r /\ e == (l1 @ [k, r]) @ l2 } -> destr_payload: LowParse.Spec.BitSum.filter_bitsum'_t (payload k) -> destr_tail: LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 @ [k, r]) l2 -> LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.Nil", "LowParse.Spec.BitSum.filter_bitsum'_t", "LowParse.Spec.BitSum.filter_bitsum'_bitsum'_t", "Prims.l_not", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "FStar.Pervasives.Native.snd", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "Prims.bool", "Prims.unit", "FStar.List.Tot.Properties.append_mem", "FStar.List.Tot.Base.map", "FStar.List.Tot.Properties.map_append", "FStar.List.Tot.Properties.append_assoc", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitSum'", "Prims._assert", "Prims.l_iff", "Prims.op_Equality", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_rhs", "LowParse.Spec.Enum.enum_repr_of_key_append_cons" ]
[]
false
false
false
false
false
let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) =
fun x xr -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@@ inline_let ]let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@@ inline_let ]let cond = (xr <: t) = yr in [@@ inline_let ]let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@@ inline_let ]let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elems
val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 41, "start_col": 0, "start_line": 39 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> a * s: Lib.Sequence.seq t {Lib.Sequence.length s == n}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeat_gen", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty" ]
[]
false
false
false
false
false
let generate_elems #t #a max n f init =
let init2:generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2
false
StaticAssertions.fst
StaticAssertions.compute_static_asserts
val compute_static_asserts (benv: B.global_env) (senv: TypeSizes.size_env) (r: option type_refinement) : ML static_asserts
val compute_static_asserts (benv: B.global_env) (senv: TypeSizes.size_env) (r: option type_refinement) : ML static_asserts
let compute_static_asserts (benv:B.global_env) (senv:TypeSizes.size_env) (r:option type_refinement) : ML static_asserts = let env = B.mk_env benv, senv in match r with | None -> empty_static_asserts | Some r -> let sizeof_assertions = r.type_map |> List.map (fun (i, jopt) -> let j = match jopt with | None -> i | Some j -> j in let t_j = with_dummy_range (Type_app j KindSpec []) in match TypeSizes.size_of_typ env t_j with | TypeSizes.Fixed n | TypeSizes.WithVariableSuffix n -> { type_name = i; size = n } | _ -> Ast.error (Printf.sprintf "Type %s is variable sized and cannot refine a C type %s" (ident_to_string j) (ident_to_string i)) i.range) in { includes = r.Ast.includes; sizeof_assertions = sizeof_assertions }
{ "file_name": "src/3d/StaticAssertions.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 7, "end_line": 71, "start_col": 0, "start_line": 38 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module StaticAssertions open FStar.All open Ast module B = Binding noeq type sizeof_assertion = { type_name : ident; size : int } noeq type static_asserts = { includes : list string; sizeof_assertions : list sizeof_assertion } let empty_static_asserts = { includes = []; sizeof_assertions = [] }
{ "checked_file": "/", "dependencies": [ "TypeSizes.fsti.checked", "prims.fst.checked", "Options.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "StaticAssertions.fst" }
[ { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
benv: GlobalEnv.global_env -> senv: TypeSizes.size_env -> r: FStar.Pervasives.Native.option Ast.type_refinement -> FStar.All.ML StaticAssertions.static_asserts
FStar.All.ML
[ "ml" ]
[]
[ "GlobalEnv.global_env", "TypeSizes.size_env", "FStar.Pervasives.Native.option", "Ast.type_refinement", "StaticAssertions.empty_static_asserts", "StaticAssertions.static_asserts", "StaticAssertions.Mkstatic_asserts", "Ast.__proj__Mktype_refinement__item__includes", "Prims.list", "StaticAssertions.sizeof_assertion", "FStar.List.map", "FStar.Pervasives.Native.tuple2", "Ast.with_meta_t", "Ast.ident'", "Prims.int", "StaticAssertions.Mksizeof_assertion", "TypeSizes.size", "Ast.error", "FStar.Printf.sprintf", "Ast.ident_to_string", "Ast.__proj__Mkwith_meta_t__item__range", "TypeSizes.size_of_typ", "Ast.typ'", "Ast.with_dummy_range", "Ast.Type_app", "Ast.KindSpec", "Prims.Nil", "Ast.either", "Ast.expr", "Ast.out_expr", "Ast.__proj__Mktype_refinement__item__type_map", "Binding.env", "FStar.Pervasives.Native.Mktuple2", "Binding.mk_env" ]
[]
false
true
false
false
false
let compute_static_asserts (benv: B.global_env) (senv: TypeSizes.size_env) (r: option type_refinement) : ML static_asserts =
let env = B.mk_env benv, senv in match r with | None -> empty_static_asserts | Some r -> let sizeof_assertions = r.type_map |> List.map (fun (i, jopt) -> let j = match jopt with | None -> i | Some j -> j in let t_j = with_dummy_range (Type_app j KindSpec []) in match TypeSizes.size_of_typ env t_j with | TypeSizes.Fixed n | TypeSizes.WithVariableSuffix n -> { type_name = i; size = n } | _ -> Ast.error (Printf.sprintf "Type %s is variable sized and cannot refine a C type %s" (ident_to_string j) (ident_to_string i)) i.range) in { includes = r.Ast.includes; sizeof_assertions = sizeof_assertions }
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.destr_bitsum'_bitsum_nil
val destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e [])
val destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e [])
let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ())
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 18, "end_line": 1401, "start_col": 0, "start_line": 1388 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> h: Prims.squash (e == e @ []) -> LowParse.Spec.BitSum.destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.squash", "Prims.eq2", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.append", "Prims.Nil", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.BitSum'", "FStar.Ghost.erased", "LowParse.Spec.BitSum.if_combinator_weak", "FStar.Ghost.reveal", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "Prims.l_not", "LowParse.Spec.Enum.list_mem", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.snd", "FStar.Pervasives.false_elim", "LowParse.Spec.BitSum.synth_bitsum'", "Prims.unit", "Prims._assert", "Prims.l_False", "LowParse.Spec.BitSum.destr_bitsum'_bitsum_t" ]
[]
false
false
false
false
false
let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) =
(fun u u_if f x -> assert False; false_elim ())
false
Spec.Agile.HMAC.fst
Spec.Agile.HMAC.hmac
val hmac: a: fixed_len_alg -> key: bytes -> data: bytes -> Pure (lbytes (hash_length a)) (requires keysized a (Seq.length key) /\ (Seq.length data + block_length a) `less_than_max_input_length` a) (ensures fun _ -> True)
val hmac: a: fixed_len_alg -> key: bytes -> data: bytes -> Pure (lbytes (hash_length a)) (requires keysized a (Seq.length key) /\ (Seq.length data + block_length a) `less_than_max_input_length` a) (ensures fun _ -> True)
let hmac a key data = assert_norm (pow2 32 < pow2 61); assert_norm (pow2 32 < pow2 125); let k = wrap a key in let h1 = Spec.Agile.Hash.hash a (Seq.append (xor (u8 0x36) k) data) in let h2 = Spec.Agile.Hash.hash a (Seq.append (xor (u8 0x5c) k) h1) in h2
{ "file_name": "specs/Spec.Agile.HMAC.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 41, "start_col": 0, "start_line": 35 }
module Spec.Agile.HMAC open Spec.Hash.Definitions open Lib.IntTypes #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" let wrap (a: fixed_len_alg) (key: bytes{Seq.length key `less_than_max_input_length` a}) : lbytes (block_length a) = let key0 = if Seq.length key <= block_length a then key else Spec.Agile.Hash.hash a key in let paddingLength = block_length a - Seq.length key0 in Seq.append key0 (Seq.create paddingLength (u8 0)) let xor (x: uint8) (v: bytes) : lbytes (Seq.length v) = Spec.Loops.seq_map (logxor x) v #push-options "--max_fuel 1" let rec xor_lemma (x: uint8) (v: bytes) : Lemma (ensures xor x v == Spec.Loops.seq_map2 logxor (Seq.create (Seq.length v) x) v) (decreases (Seq.length v)) = let l = Seq.length v in if l > 0 then ( let xs = Seq.create l x in let xs' = Seq.create (l-1) x in Seq.lemma_eq_intro (Seq.slice xs 1 l) xs'; xor_lemma x (Seq.slice v 1 l)) #pop-options
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Spec.Agile.HMAC.fst" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.fixed_len_alg -> key: Spec.Hash.Definitions.bytes -> data: Spec.Hash.Definitions.bytes -> Prims.Pure (Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.hash_length a))
Prims.Pure
[]
[]
[ "Spec.Hash.Definitions.fixed_len_alg", "Spec.Hash.Definitions.bytes", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Hash.Definitions.hash_length'", "Spec.Agile.Hash.hash", "FStar.Seq.Base.append", "Lib.IntTypes.uint8", "Spec.Agile.HMAC.xor", "Lib.IntTypes.u8", "Spec.Agile.HMAC.lbytes", "Spec.Hash.Definitions.block_length", "Spec.Agile.HMAC.wrap", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Spec.Hash.Definitions.hash_length" ]
[]
false
false
false
false
false
let hmac a key data =
assert_norm (pow2 32 < pow2 61); assert_norm (pow2 32 < pow2 125); let k = wrap a key in let h1 = Spec.Agile.Hash.hash a (Seq.append (xor (u8 0x36) k) data) in let h2 = Spec.Agile.Hash.hash a (Seq.append (xor (u8 0x5c) k) h1) in h2
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elems_unfold
val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init))
val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init))
let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 91, "end_line": 71, "start_col": 0, "start_line": 69 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Lib.generate_elems max (i + 1) f init == Hacl.Spec.Lib.generate_elem_f max f i (Hacl.Spec.Lib.generate_elems max i f init))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.unfold_repeat_gen", "Prims.op_Addition", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty", "Prims.unit" ]
[]
true
false
true
false
false
let generate_elems_unfold #t #a max n f init i =
let init2:generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elem_f
val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1)
val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1)
let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res'
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 27, "start_col": 0, "start_line": 24 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> i: Prims.nat{i < max} -> acc: Hacl.Spec.Lib.generate_elem_a t a max i -> Hacl.Spec.Lib.generate_elem_a t a max (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elem_a", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Seq.Base.seq", "FStar.Seq.Properties.snoc" ]
[]
false
false
false
false
false
let generate_elem_f #t #a max f i (c, res) =
let c', e = f i c in let res' = Seq.snoc res e in c', res'
false
FStar.DM4F.Heap.Random.fsti
FStar.DM4F.Heap.Random.size
val size : Prims.int
let size = 10
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.Random.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 22, "start_col": 0, "start_line": 22 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.Random (***** Random tape *****) open FStar.Seq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.Random.fsti" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let size =
10
false
FStar.DM4F.Heap.Random.fsti
FStar.DM4F.Heap.Random.elem
val elem : Type0
let elem = n:nat{n < q}
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.Random.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.Random (***** Random tape *****) open FStar.Seq let size = 10 val q: pos
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.Random.fsti" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.DM4F.Heap.Random.q" ]
[]
false
false
false
true
true
let elem =
n: nat{n < q}
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elems4_f
val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1)
val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1)
let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 95, "start_col": 0, "start_line": 85 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> i: Prims.nat{i < max / 4} -> acc: Hacl.Spec.Lib.generate_elems4_a t a max i -> Hacl.Spec.Lib.generate_elems4_a t a max (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Prims.op_Division", "Hacl.Spec.Lib.generate_elems4_a", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Seq.Base.seq", "FStar.Seq.Properties.snoc" ]
[]
false
false
false
false
false
let generate_elems4_f #t #a max f i (c, res) =
let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.eq_generate_elems0
val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty))
val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty))
let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 55, "start_col": 0, "start_line": 53 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Lib.generate_elems max 0 f init == (init, FStar.Seq.Base.empty))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.eq_repeat_gen0", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty", "Prims.unit" ]
[]
true
false
true
false
false
let eq_generate_elems0 #t #a max n f init =
let init2:generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitStop
val synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ()))
val synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ()))
let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 25, "end_line": 1561, "start_col": 0, "start_line": 1556 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x })
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> LowParse.Spec.BitSum.synth_bitsum'_recip_t (LowParse.Spec.BitSum.BitStop ())
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.BitStop", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "Prims.eq2", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.synth_bitsum'_recip_t" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) =
fun _ -> cl.uint_to_t 0
false
FStar.DM4F.Heap.Random.fsti
FStar.DM4F.Heap.Random.sel
val sel : h: FStar.DM4F.Heap.Random.tape -> i: FStar.DM4F.Heap.Random.id -> FStar.DM4F.Heap.Random.elem
let sel = index
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.Random.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.Random (***** Random tape *****) open FStar.Seq let size = 10 val q: pos let elem = n:nat{n < q} val id : eqtype val tape : eqtype val to_id (n:nat{n < size}) : id val incrementable: id -> bool val incr (i:id{incrementable i}) : id
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.Random.fsti" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.DM4F.Heap.Random.tape -> i: FStar.DM4F.Heap.Random.id -> FStar.DM4F.Heap.Random.elem
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.Random.index" ]
[]
false
false
false
true
false
let sel =
index
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_elems_unroll4
val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1)
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 12, "end_line": 110, "start_col": 0, "start_line": 107 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> a * s: Lib.Sequence.seq t {Lib.Sequence.length s == n}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_Division", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Lib.generate_elem_a", "Lib.LoopCombinators.repeat_right", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems4_a", "Lib.LoopCombinators.repeat_gen", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Seq.Base.empty" ]
[]
false
false
false
false
false
let generate_elems_unroll4 #t #a max n f init =
let c0, res0 = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let c1, res1 = Loops.repeat_right ((n / 4) * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1)
false
Spec.Agile.HMAC.fst
Spec.Agile.HMAC.wrap
val wrap (a: fixed_len_alg) (key: bytes{(Seq.length key) `less_than_max_input_length` a}) : lbytes (block_length a)
val wrap (a: fixed_len_alg) (key: bytes{(Seq.length key) `less_than_max_input_length` a}) : lbytes (block_length a)
let wrap (a: fixed_len_alg) (key: bytes{Seq.length key `less_than_max_input_length` a}) : lbytes (block_length a) = let key0 = if Seq.length key <= block_length a then key else Spec.Agile.Hash.hash a key in let paddingLength = block_length a - Seq.length key0 in Seq.append key0 (Seq.create paddingLength (u8 0))
{ "file_name": "specs/Spec.Agile.HMAC.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 15, "start_col": 0, "start_line": 8 }
module Spec.Agile.HMAC open Spec.Hash.Definitions open Lib.IntTypes #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Spec.Agile.HMAC.fst" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.fixed_len_alg -> key: Spec.Hash.Definitions.bytes {Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length key) a} -> Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.block_length a)
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.fixed_len_alg", "Spec.Hash.Definitions.bytes", "Prims.b2t", "Spec.Hash.Definitions.less_than_max_input_length", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Lib.IntTypes.u8", "Prims.int", "Prims.op_Subtraction", "Spec.Hash.Definitions.block_length", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_LessThanOrEqual", "Prims.bool", "Spec.Agile.Hash.hash", "Spec.Agile.HMAC.lbytes" ]
[]
false
false
false
false
false
let wrap (a: fixed_len_alg) (key: bytes{(Seq.length key) `less_than_max_input_length` a}) : lbytes (block_length a) =
let key0 = if Seq.length key <= block_length a then key else Spec.Agile.Hash.hash a key in let paddingLength = block_length a - Seq.length key0 in Seq.append key0 (Seq.create paddingLength (u8 0))
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.lemma_generate_elems4
val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2)
val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2)
let lemma_generate_elems4 #t #a max n f init = lemma_generate_elems4_loop #t #a max n f init; lemma_generate_elems_unroll4 #t #a max n f init
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 271, "start_col": 0, "start_line": 269 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3 val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1) let lemma_generate_elems4_loop_step #t #a max k f i c s = let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3 val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2) let rec lemma_generate_elems4_loop #t #a max n f init = let k = n / 4 in let (c1, res1) = generate_blocks 4 (max / 4) k (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in if k = 0 then begin eq_generate_blocks0 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init; Loops.eq_repeat_gen0 k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) end else begin lemma_generate_elems4_loop #t #a max (n - 4) f init; let (c3, res3) = generate_blocks 4 (max / 4) (k - 1) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c4, res4) = Loops.repeat_gen (k - 1) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in //assert (c3 == c4 /\ res3 == res4); unfold_generate_blocks 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init (k - 1); Loops.unfold_repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) (k - 1); //let (acc', s') = generate_blocks4_f #t #a (max / 4) f (k - 1) c3 in //assert (res1 == Seq.append res3 s'); lemma_generate_elems4_loop_step #t #a max k f (k - 1) c3 res3; () end val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems max n f init in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in let _ = Lib.Sequence.generate_blocks 4 (max / 4) (n / 4) (Lib.LoopCombinators.fixed_a a) (Hacl.Spec.Lib.generate_blocks4_f (max / 4) f) init in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Lib.LoopCombinators.repeat_right ((n / 4) * 4) n (Hacl.Spec.Lib.generate_elem_a t a max) (Hacl.Spec.Lib.generate_elem_f max f) (c1, res1) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c2 res2 = _ in c == c2 /\ res == res2) <: Type0) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.lemma_generate_elems_unroll4", "Prims.unit", "Hacl.Spec.Lib.lemma_generate_elems4_loop" ]
[]
true
false
true
false
false
let lemma_generate_elems4 #t #a max n f init =
lemma_generate_elems4_loop #t #a max n f init; lemma_generate_elems_unroll4 #t #a max n f init
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.lemma_generate_elems_unroll4
val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init)
val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init)
let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 174, "start_col": 0, "start_line": 165 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Lib.generate_elems_unroll4 max n f init == Hacl.Spec.Lib.generate_elems max n f init )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_Division", "Hacl.Spec.Lib.lemma_generate_elems_unroll4_loop", "Prims.unit", "Lib.LoopCombinators.repeat_gen_def", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.empty", "Lib.LoopCombinators.repeat_right_plus", "Prims.op_Multiply", "Lib.LoopCombinators.repeat_gen", "Lib.LoopCombinators.repeat_right", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f" ]
[]
false
false
true
false
false
let lemma_generate_elems_unroll4 #t #a max n f init =
let c0, res0 = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let c1, res1 = Loops.repeat_right ((n / 4) * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let c2, res2 = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let c3, res3 = Loops.repeat_gen ((n / 4) * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 ((n / 4) * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def ((n / 4) * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max ((n / 4) * 4) f init
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_intro
val synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload))
val synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload))
let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 10, "end_line": 1632, "start_col": 0, "start_line": 1618 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> phi: LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e -> LowParse.Spec.BitSum.synth_bitsum'_recip_t (LowParse.Spec.BitSum.BitSum' key key_size e payload )
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.BitSum'", "LowParse.Spec.BitSum.bitsum'_type'", "Prims.eq2", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.synth_bitsum'_recip_t" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) =
fun x -> [@@ inline_let ]let (| k , pl |) = x in phi k pl
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitField
val synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest))
val synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest))
let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 63, "end_line": 1576, "start_col": 0, "start_line": 1564 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} -> rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) -> ih: LowParse.Spec.BitSum.synth_bitsum'_recip_t rest -> LowParse.Spec.BitSum.synth_bitsum'_recip_t (LowParse.Spec.BitSum.BitField sz rest)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Spec.BitSum.synth_bitsum'_recip_t", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.BitField", "LowParse.BitFields.bitfield", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "Prims.eq2", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) =
fun x -> [@@ inline_let ]let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.generate_blocks4_f
val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4)
val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4)
let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 191, "start_col": 0, "start_line": 186 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.nat -> f: (i: Prims.nat{i < 4 * k} -> _: a -> a * t) -> i: Prims.nat{i < k} -> c: a -> a * Lib.Sequence.lseq t 4
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.lseq", "Lib.Sequence.create4", "Prims.op_Addition" ]
[]
false
false
false
false
false
let generate_blocks4_f #t #a max f i c =
let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3
false
Spec.Agile.HMAC.fst
Spec.Agile.HMAC.xor_lemma
val xor_lemma (x: uint8) (v: bytes) : Lemma (ensures xor x v == Spec.Loops.seq_map2 logxor (Seq.create (Seq.length v) x) v) (decreases (Seq.length v))
val xor_lemma (x: uint8) (v: bytes) : Lemma (ensures xor x v == Spec.Loops.seq_map2 logxor (Seq.create (Seq.length v) x) v) (decreases (Seq.length v))
let rec xor_lemma (x: uint8) (v: bytes) : Lemma (ensures xor x v == Spec.Loops.seq_map2 logxor (Seq.create (Seq.length v) x) v) (decreases (Seq.length v)) = let l = Seq.length v in if l > 0 then ( let xs = Seq.create l x in let xs' = Seq.create (l-1) x in Seq.lemma_eq_intro (Seq.slice xs 1 l) xs'; xor_lemma x (Seq.slice v 1 l))
{ "file_name": "specs/Spec.Agile.HMAC.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 31, "start_col": 0, "start_line": 22 }
module Spec.Agile.HMAC open Spec.Hash.Definitions open Lib.IntTypes #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" let wrap (a: fixed_len_alg) (key: bytes{Seq.length key `less_than_max_input_length` a}) : lbytes (block_length a) = let key0 = if Seq.length key <= block_length a then key else Spec.Agile.Hash.hash a key in let paddingLength = block_length a - Seq.length key0 in Seq.append key0 (Seq.create paddingLength (u8 0)) let xor (x: uint8) (v: bytes) : lbytes (Seq.length v) = Spec.Loops.seq_map (logxor x) v #push-options "--max_fuel 1"
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Spec.Agile.HMAC.fst" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint8 -> v: Spec.Hash.Definitions.bytes -> FStar.Pervasives.Lemma (ensures Spec.Agile.HMAC.xor x v == Spec.Loops.seq_map2 Lib.IntTypes.logxor (FStar.Seq.Base.create (FStar.Seq.Base.length v) x) v) (decreases FStar.Seq.Base.length v)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Lib.IntTypes.uint8", "Spec.Hash.Definitions.bytes", "Prims.op_GreaterThan", "Spec.Agile.HMAC.xor_lemma", "FStar.Seq.Base.slice", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.create", "Prims.op_Subtraction", "Prims.bool", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.l_or", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.l_Forall", "Prims.l_imp", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.IntTypes.logxor", "Spec.Agile.HMAC.xor", "Spec.Loops.seq_map2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec xor_lemma (x: uint8) (v: bytes) : Lemma (ensures xor x v == Spec.Loops.seq_map2 logxor (Seq.create (Seq.length v) x) v) (decreases (Seq.length v)) =
let l = Seq.length v in if l > 0 then (let xs = Seq.create l x in let xs' = Seq.create (l - 1) x in Seq.lemma_eq_intro (Seq.slice xs 1 l) xs'; xor_lemma x (Seq.slice v 1 l))
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_nil
val synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) {e == l1 `L.append` []}) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 [])
val synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) {e == l1 `L.append` []}) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 [])
let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim ()
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 15, "end_line": 1649, "start_col": 0, "start_line": 1635 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ []} -> LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.Nil", "Prims.l_not", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.fst", "LowParse.Spec.BitSum.bitsum'_type", "FStar.Pervasives.false_elim", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.BitSum'", "Prims.Mkdtuple2", "LowParse.Spec.BitSum.bitsum'_type'", "Prims.unit", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) {e == l1 `L.append` []}) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) =
fun k _ -> [@@ inline_let ]let _ = L.append_l_nil l1 in false_elim ()
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.is_valid_bitfield
val is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool
val is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool
let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 46, "end_line": 1804, "start_col": 0, "start_line": 1787 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_key_type b -> low: Prims.nat -> high: Prims.nat -> Prims.GTot Prims.bool
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_key_type", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "Prims.dtuple2", "LowParse.Spec.BitSum.bitsum'_key_type_elim_BitSum'" ]
[ "recursion" ]
false
false
false
false
false
let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool =
match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.mk_destr_bitsum'_t
val mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()])
val mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()])
let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 99, "end_line": 1540, "start_col": 0, "start_line": 1493 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> Prims.Tot (LowParse.Spec.BitSum.destr_bitsum'_t b <: Type)
Prims.Tot
[ "total", "" ]
[ "mk_destr_bitsum'_t", "mk_destr_bitsum'_bitsum_t" ]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "Prims.squash", "Prims.eq2", "Prims.int", "LowParse.Spec.BitSum.destr_bitsum'_bitstop", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.Spec.BitSum.destr_bitsum'_bitfield", "LowParse.Spec.BitSum.mk_destr_bitsum'_t", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.destr_bitsum'_bitsum_intro", "LowParse.Spec.BitSum.mk_destr_bitsum'_bitsum_t", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitSum.destr_bitsum'_t" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) =
match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.is_valid_bitfield_prop
val is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures (low <= high /\ high <= bitsum'_size)) [SMTPat (is_valid_bitfield b k low high)]
val is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures (low <= high /\ high <= bitsum'_size)) [SMTPat (is_valid_bitfield b k low high)]
let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 51, "end_line": 1827, "start_col": 0, "start_line": 1806 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_key_type b -> low: Prims.nat -> high: Prims.nat -> FStar.Pervasives.Lemma (requires LowParse.Spec.BitSum.is_valid_bitfield b k low high) (ensures low <= high /\ high <= bitsum'_size) [SMTPat (LowParse.Spec.BitSum.is_valid_bitfield b k low high)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_key_type", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.is_valid_bitfield_prop", "LowParse.Spec.BitSum.bitsum'_key_type_elim_BitField", "Prims.unit", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "Prims.dtuple2", "LowParse.Spec.BitSum.bitsum'_key_type_elim_BitSum'", "LowParse.Spec.BitSum.is_valid_bitfield", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures (low <= high /\ high <= bitsum'_size)) [SMTPat (is_valid_bitfield b k low high)] =
match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_gen
val synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (repr_of: (k: enum_key e -> Tot (r: enum_repr e {r == enum_repr_of_key e k}))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: (k: enum_key e -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload))
val synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (repr_of: (k: enum_key e -> Tot (r: enum_repr e {r == enum_repr_of_key e k}))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: (k: enum_key e -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload))
let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 91, "end_line": 1597, "start_col": 0, "start_line": 1579 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> repr_of: (k: LowParse.Spec.Enum.enum_key e -> r: LowParse.Spec.Enum.enum_repr e {r == LowParse.Spec.Enum.enum_repr_of_key e k}) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> synth_payload: (k: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.synth_bitsum'_recip_t (payload k)) -> LowParse.Spec.BitSum.synth_bitsum'_recip_t (LowParse.Spec.BitSum.BitSum' key key_size e payload )
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.enum_repr", "Prims.eq2", "LowParse.Spec.Enum.enum_repr_of_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Spec.BitSum.synth_bitsum'_recip_t", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.BitSum'", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (repr_of: (k: enum_key e -> Tot (r: enum_repr e {r == enum_repr_of_key e k}))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: (k: enum_key e -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) =
fun x -> [@@ inline_let ]let (| k , pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k)
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.lemma_generate_elems4_loop_step
val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1)
val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1)
let lemma_generate_elems4_loop_step #t #a max k f i c s = let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 222, "start_col": 0, "start_line": 208 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3 val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> k: Prims.nat{4 * k <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> i: Prims.nat{i < k} -> c: a -> s: Lib.Sequence.seq t {Lib.Sequence.length s == 4 * i} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems4_f max f i (c, s) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Hacl.Spec.Lib.generate_blocks4_f k f i c in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c2 res2 = _ in c1 == c2 /\ FStar.Seq.Base.append s res2 == res1) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "Prims.op_Addition", "Lib.Sequence.lseq", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.append", "FStar.Seq.Base.seq", "FStar.Seq.Properties.snoc", "Lib.Sequence.create4", "Prims.unit", "Hacl.Spec.Lib.generate_blocks4_f", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
true
false
false
let lemma_generate_elems4_loop_step #t #a max k f i c s =
let c1, res1 = generate_elems4_f #t #a max f i (c, s) in let c2, res2 = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.mk_destr_bitsum'_bitsum_t
val mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload;0;l2])
val mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload;0;l2])
let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 99, "end_line": 1540, "start_col": 0, "start_line": 1493 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} -> Prims.Tot (LowParse.Spec.BitSum.destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type)
Prims.Tot
[ "total", "" ]
[ "mk_destr_bitsum'_t", "mk_destr_bitsum'_bitsum_t" ]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "LowParse.Spec.BitSum.destr_bitsum'_bitsum_nil", "Prims.unit", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Spec.BitSum.destr_bitsum'_bitsum_cons_nil", "LowParse.Spec.BitSum.mk_destr_bitsum'_t", "FStar.List.Tot.Properties.append_assoc", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "LowParse.Spec.Enum.enum_repr_of_key_append_cons", "LowParse.Spec.BitSum.destr_bitsum'_bitsum_cons", "LowParse.Spec.BitSum.mk_destr_bitsum'_bitsum_t", "LowParse.Spec.BitSum.destr_bitsum'_bitsum_t", "LowParse.Spec.BitSum.bitsum_wellfoundedness", "LowParse.Spec.BitSum.BitSum'" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload;0;l2]) =
bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@@ inline_let ]let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [k, r] -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.lemma_generate_elems4_loop
val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2)
val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2)
let rec lemma_generate_elems4_loop #t #a max n f init = let k = n / 4 in let (c1, res1) = generate_blocks 4 (max / 4) k (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in if k = 0 then begin eq_generate_blocks0 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init; Loops.eq_repeat_gen0 k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) end else begin lemma_generate_elems4_loop #t #a max (n - 4) f init; let (c3, res3) = generate_blocks 4 (max / 4) (k - 1) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c4, res4) = Loops.repeat_gen (k - 1) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in //assert (c3 == c4 /\ res3 == res4); unfold_generate_blocks 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init (k - 1); Loops.unfold_repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) (k - 1); //let (acc', s') = generate_blocks4_f #t #a (max / 4) f (k - 1) c3 in //assert (res1 == Seq.append res3 s'); lemma_generate_elems4_loop_step #t #a max k f (k - 1) c3 res3; () end
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 254, "start_col": 0, "start_line": 236 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3 val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1) let lemma_generate_elems4_loop_step #t #a max k f i c s = let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3 val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures (let _ = Lib.Sequence.generate_blocks 4 (max / 4) (n / 4) (Lib.LoopCombinators.fixed_a a) (Hacl.Spec.Lib.generate_blocks4_f (max / 4) f) init in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Lib.LoopCombinators.repeat_gen (n / 4) (Hacl.Spec.Lib.generate_elems4_a t a max) (Hacl.Spec.Lib.generate_elems4_f max f) (init, FStar.Seq.Base.empty) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c2 res2 = _ in c1 == c2 /\ res1 == res2) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.fixed_a", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_Equality", "Lib.LoopCombinators.eq_repeat_gen0", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.empty", "Prims.unit", "Lib.Sequence.eq_generate_blocks0", "Prims.op_Division", "Hacl.Spec.Lib.generate_blocks4_f", "Prims.bool", "Prims.op_Subtraction", "Hacl.Spec.Lib.lemma_generate_elems4_loop_step", "Lib.LoopCombinators.unfold_repeat_gen", "Lib.Sequence.unfold_generate_blocks", "Lib.LoopCombinators.repeat_gen", "Prims.op_Multiply", "Lib.Sequence.generate_blocks", "Hacl.Spec.Lib.lemma_generate_elems4_loop" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_generate_elems4_loop #t #a max n f init =
let k = n / 4 in let c1, res1 = generate_blocks 4 (max / 4) k (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let c2, res2 = Loops.repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in if k = 0 then (eq_generate_blocks0 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init; Loops.eq_repeat_gen0 k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty)) else (lemma_generate_elems4_loop #t #a max (n - 4) f init; let c3, res3 = generate_blocks 4 (max / 4) (k - 1) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let c4, res4 = Loops.repeat_gen (k - 1) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in unfold_generate_blocks 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init (k - 1); Loops.unfold_repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) (k - 1); lemma_generate_elems4_loop_step #t #a max k f (k - 1) c3 res3; ())
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.set_valid_bitfield
val set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Tot (bitsum'_type b)
val set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Tot (bitsum'_type b)
let rec set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Tot (bitsum'_type b) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in bitsum'_type_intro_BitField cl bitsum'_size sz rest begin if low + sz = high && high = bitsum'_size then (v, tl) else (hd, set_valid_bitfield rest tl low high v) end | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k' , set_valid_bitfield (payload k') r' low high v |)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 126, "end_line": 1891, "start_col": 0, "start_line": 1870 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> v: LowParse.BitFields.bitfield cl (high - low) -> LowParse.Spec.BitSum.bitsum'_type b
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.BitFields.bitfield", "Prims.op_Subtraction", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.BitSum.bitsum'_type_intro_BitField", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "LowParse.Spec.BitSum.set_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'_type_intro_BitSum'", "Prims.Mkdtuple2", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'" ]
[ "recursion" ]
false
false
false
false
false
let rec set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Tot (bitsum'_type b) =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in bitsum'_type_intro_BitField cl bitsum'_size sz rest (if low + sz = high && high = bitsum'_size then (v, tl) else (hd, set_valid_bitfield rest tl low high v)) | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k', set_valid_bitfield (payload k') r' low high v |)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.bitsum'_key_of_t_set_valid_bitfield
val bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k)
val bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k)
let rec bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else bitsum'_key_of_t_set_valid_bitfield rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_key_of_t_set_valid_bitfield (payload k') r' low high v
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 66, "end_line": 1913, "start_col": 0, "start_line": 1893 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high let rec set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Tot (bitsum'_type b) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in bitsum'_type_intro_BitField cl bitsum'_size sz rest begin if low + sz = high && high = bitsum'_size then (v, tl) else (hd, set_valid_bitfield rest tl low high v) end | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k' , set_valid_bitfield (payload k') r' low high v |)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> v: LowParse.BitFields.bitfield cl (high - low) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitSum.bitsum'_key_of_t b (LowParse.Spec.BitSum.set_valid_bitfield b k low high v) == LowParse.Spec.BitSum.bitsum'_key_of_t b k)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.BitFields.bitfield", "Prims.op_Subtraction", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.bitsum'_key_of_t_set_valid_bitfield", "Prims.unit", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.set_valid_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k) =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else bitsum'_key_of_t_set_valid_bitfield rest tl low high v | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_key_of_t_set_valid_bitfield (payload k') r' low high v
false
Hacl.Spec.Lib.fst
Hacl.Spec.Lib.lemma_generate_elems_unroll4_loop
val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1)
val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1)
let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty)
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 153, "start_col": 0, "start_line": 125 }
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
max: Prims.nat -> n: Prims.nat{n <= max /\ n % 4 = 0} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeat_gen (n / 4) (Hacl.Spec.Lib.generate_elems4_a t a max) (Hacl.Spec.Lib.generate_elems4_f max f) (init, FStar.Seq.Base.empty) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c0 res0 = _ in let _ = Lib.LoopCombinators.repeat_gen n (Hacl.Spec.Lib.generate_elem_a t a max) (Hacl.Spec.Lib.generate_elem_f max f) (init, FStar.Seq.Base.empty) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in c0 == c1 /\ res0 == res1) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeat_gen_def", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty", "Prims.unit", "Prims.op_Division", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Mul.op_Star", "Lib.Vec.Lemmas.lemma_repeat_gen_vec", "FStar.Classical.forall_intro_2", "Prims.op_Addition", "Lib.LoopCombinators.repeat_right", "Prims.l_True", "Prims.squash", "Prims.op_Multiply", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "Lib.LoopCombinators.eq_repeat_right", "Lib.LoopCombinators.unfold_repeat_right", "Lib.LoopCombinators.repeat_gen" ]
[]
false
false
true
false
false
let lemma_generate_elems_unroll4_loop #t #a max n f init =
let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i: nat{i <= n / 4}) (acc_v: generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let c, res = acc_v in (c, res) in let aux (i: nat{i < n / 4}) (acc_v: generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.get_valid_bitfield
val get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) : Tot (bitfield cl (high - low))
val get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) : Tot (bitfield cl (high - low))
let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 47, "end_line": 1847, "start_col": 0, "start_line": 1829 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> LowParse.BitFields.bitfield cl (high - low)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.BitFields.bitfield", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.get_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'" ]
[ "recursion" ]
false
false
false
false
false
let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) : Tot (bitfield cl (high - low)) =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.mk_synth_bitsum'_recip_BitSum
val mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;0;l2])
val mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;0;l2])
let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 103, "end_line": 1783, "start_col": 0, "start_line": 1736 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} -> Prims.Tot (LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2)
Prims.Tot
[ "total", "" ]
[ "mk_synth_bitsum'_recip", "mk_synth_bitsum'_recip_BitSum" ]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_nil", "Prims.unit", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_cons_nil", "LowParse.Spec.BitSum.mk_synth_bitsum'_recip", "FStar.List.Tot.Properties.append_assoc", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "LowParse.Spec.Enum.enum_repr_of_key_append_cons", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_cons", "LowParse.Spec.BitSum.mk_synth_bitsum'_recip_BitSum", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t", "LowParse.Spec.BitSum.bitsum_wellfoundedness", "LowParse.Spec.BitSum.BitSum'" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;0;l2]) =
bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@@ inline_let ]let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [k, r] -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q )
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.get_valid_bitfield_set_valid_bitfield_same
val get_valid_bitfield_set_valid_bitfield_same (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low high /\ get_valid_bitfield b k' low high == v)
val get_valid_bitfield_set_valid_bitfield_same (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low high /\ get_valid_bitfield b k' low high == v)
let rec get_valid_bitfield_set_valid_bitfield_same (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma ( let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low high /\ get_valid_bitfield b k' low high == v ) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_same rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_same (payload k') r' low high v
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 73, "end_line": 1939, "start_col": 0, "start_line": 1915 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high let rec set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Tot (bitsum'_type b) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in bitsum'_type_intro_BitField cl bitsum'_size sz rest begin if low + sz = high && high = bitsum'_size then (v, tl) else (hd, set_valid_bitfield rest tl low high v) end | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k' , set_valid_bitfield (payload k') r' low high v |) let rec bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else bitsum'_key_of_t_set_valid_bitfield rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_key_of_t_set_valid_bitfield (payload k') r' low high v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> v: LowParse.BitFields.bitfield cl (high - low) -> FStar.Pervasives.Lemma (ensures (let k' = LowParse.Spec.BitSum.set_valid_bitfield b k low high v in LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k') low high /\ LowParse.Spec.BitSum.get_valid_bitfield b k' low high == v))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.BitFields.bitfield", "Prims.op_Subtraction", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.get_valid_bitfield_set_valid_bitfield_same", "Prims.unit", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Spec.BitSum.get_valid_bitfield", "LowParse.Spec.BitSum.set_valid_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec get_valid_bitfield_set_valid_bitfield_same (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low high /\ get_valid_bitfield b k' low high == v) =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_same rest tl low high v | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_same (payload k') r' low high v
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.mk_synth_bitsum'_recip
val mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()])
val mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()])
let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 103, "end_line": 1783, "start_col": 0, "start_line": 1736 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> Prims.Tot (LowParse.Spec.BitSum.synth_bitsum'_recip_t b)
Prims.Tot
[ "total", "" ]
[ "mk_synth_bitsum'_recip", "mk_synth_bitsum'_recip_BitSum" ]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "Prims.squash", "Prims.eq2", "Prims.int", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitStop", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitField", "LowParse.Spec.BitSum.mk_synth_bitsum'_recip", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_intro", "LowParse.Spec.BitSum.mk_synth_bitsum'_recip_BitSum", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitSum.synth_bitsum'_recip_t" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) =
match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_cons
val synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
val synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 33, "end_line": 1691, "start_col": 0, "start_line": 1652 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> k: key -> r: LowParse.BitFields.bitfield cl key_size -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) { e == l1 @ (k, r) :: l2 /\ LowParse.Spec.Enum.list_mem k (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\ LowParse.Spec.Enum.enum_repr_of_key e k == r /\ e == (l1 @ [k, r]) @ l2 } -> destr_payload: LowParse.Spec.BitSum.synth_bitsum'_recip_t (payload k) -> destr_tail: LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 @ [k, r]) l2 -> LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.Nil", "LowParse.Spec.BitSum.synth_bitsum'_recip_t", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t", "Prims.l_not", "LowParse.Spec.BitSum.bitsum'_type", "Prims.op_Equality", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.l_or", "Prims.bool", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitSum'", "FStar.UInt.uint_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.set_bitfield", "LowParse.Spec.BitSum.synth_bitsum'_recip", "Prims.Mkdtuple2", "LowParse.Spec.BitSum.bitsum'_type'", "FStar.List.Tot.Properties.append_mem", "FStar.List.Tot.Base.map", "FStar.List.Tot.Properties.map_append", "FStar.List.Tot.Properties.append_assoc", "LowParse.Spec.Enum.enum_repr_of_key_append_cons" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) =
fun k' rest -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then [@@ inline_let ]let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) else [@@ inline_let ]let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.get_valid_bitfield_set_valid_bitfield_other
val get_valid_bitfield_set_valid_bitfield_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) (low': nat) (high': nat { is_valid_bitfield b (bitsum'_key_of_t b k) low' high' /\ (high' <= low \/ high <= low') }) : Lemma (let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low' high' /\ get_valid_bitfield b k' low' high' == get_valid_bitfield b k low' high')
val get_valid_bitfield_set_valid_bitfield_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) (low': nat) (high': nat { is_valid_bitfield b (bitsum'_key_of_t b k) low' high' /\ (high' <= low \/ high <= low') }) : Lemma (let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low' high' /\ get_valid_bitfield b k' low' high' == get_valid_bitfield b k low' high')
let rec get_valid_bitfield_set_valid_bitfield_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) (low': nat) (high': nat { is_valid_bitfield b (bitsum'_key_of_t b k) low' high' /\ (high' <= low \/ high <= low') }) : Lemma ( let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low' high' /\ get_valid_bitfield b k' low' high' == get_valid_bitfield b k low' high' ) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low' + sz = high' && high' = bitsum'_size then () else if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_other rest tl low high v low' high' | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_other (payload k') r' low high v low' high'
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 85, "end_line": 1969, "start_col": 0, "start_line": 1941 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high let rec set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Tot (bitsum'_type b) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in bitsum'_type_intro_BitField cl bitsum'_size sz rest begin if low + sz = high && high = bitsum'_size then (v, tl) else (hd, set_valid_bitfield rest tl low high v) end | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k' , set_valid_bitfield (payload k') r' low high v |) let rec bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else bitsum'_key_of_t_set_valid_bitfield rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_key_of_t_set_valid_bitfield (payload k') r' low high v let rec get_valid_bitfield_set_valid_bitfield_same (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma ( let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low high /\ get_valid_bitfield b k' low high == v ) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_same rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_same (payload k') r' low high v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> v: LowParse.BitFields.bitfield cl (high - low) -> low': Prims.nat -> high': Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low' high' /\ (high' <= low \/ high <= low') } -> FStar.Pervasives.Lemma (ensures (let k' = LowParse.Spec.BitSum.set_valid_bitfield b k low high v in LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k') low' high' /\ LowParse.Spec.BitSum.get_valid_bitfield b k' low' high' == LowParse.Spec.BitSum.get_valid_bitfield b k low' high'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.BitFields.bitfield", "Prims.op_Subtraction", "Prims.l_and", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.get_valid_bitfield_set_valid_bitfield_other", "Prims.unit", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Spec.BitSum.get_valid_bitfield", "LowParse.Spec.BitSum.set_valid_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec get_valid_bitfield_set_valid_bitfield_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) (low': nat) (high': nat { is_valid_bitfield b (bitsum'_key_of_t b k) low' high' /\ (high' <= low \/ high <= low') }) : Lemma (let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low' high' /\ get_valid_bitfield b k' low' high' == get_valid_bitfield b k low' high') =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low' + sz = high' && high' = bitsum'_size then () else if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_other rest tl low high v low' high' | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_other (payload k') r' low high v low' high'
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_cons_nil
val synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ([(k, r)]) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ([(k, r)]))
val synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ([(k, r)]) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ([(k, r)]))
let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t)
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 88, "end_line": 1732, "start_col": 0, "start_line": 1694 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> k: key -> r: LowParse.BitFields.bitfield cl key_size { e == l1 @ [k, r] /\ LowParse.Spec.Enum.list_mem k (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\ LowParse.Spec.Enum.enum_repr_of_key e k == r /\ e == (l1 @ [k, r]) @ [] } -> destr_payload: LowParse.Spec.BitSum.synth_bitsum'_recip_t (payload k) -> LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 [k, r]
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.enum_repr_of_key", "LowParse.Spec.BitSum.synth_bitsum'_recip_t", "Prims.l_not", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.l_or", "Prims.bool", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.BitSum'", "FStar.UInt.uint_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.set_bitfield", "LowParse.Spec.BitSum.synth_bitsum'_recip", "Prims.Mkdtuple2", "LowParse.Spec.BitSum.bitsum'_type'", "Prims.squash", "Prims.op_Equality", "FStar.List.Tot.Properties.append_mem", "FStar.List.Tot.Base.map", "FStar.List.Tot.Properties.map_append", "FStar.List.Tot.Properties.append_assoc", "LowParse.Spec.Enum.enum_repr_of_key_append_cons", "LowParse.Spec.BitSum.synth_bitsum'_recip_BitSum_t" ]
[]
false
false
false
false
false
let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ([(k, r)]) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ([(k, r)])) =
fun k' rest -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@@ inline_let ]let _:squash (k' = k) = if (k' = k) then () else (L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key)) in [@@ inline_let ]let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.set_valid_bitfield_correct
val set_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (synth_bitsum'_recip b (set_valid_bitfield b k low high v) == cl.set_bitfield (synth_bitsum'_recip b k) low high v)
val set_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (synth_bitsum'_recip b (set_valid_bitfield b k low high v) == cl.set_bitfield (synth_bitsum'_recip b k) low high v)
let rec set_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma (synth_bitsum'_recip b (set_valid_bitfield b k low high v) == cl.set_bitfield (synth_bitsum'_recip b k) low high v) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then BF.uint_set_bitfield_set_bitfield_same cl (synth_bitsum'_recip rest tl) low high hd v else begin BF.uint_set_bitfield_set_bitfield_other cl (synth_bitsum'_recip rest tl) (bitsum'_size - sz) bitsum'_size hd low high v; set_valid_bitfield_correct rest tl low high v end | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in BF.uint_set_bitfield_set_bitfield_other cl (synth_bitsum'_recip (payload k') r') (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k') low high v; set_valid_bitfield_correct (payload k') r' low high v
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 57, "end_line": 1996, "start_col": 0, "start_line": 1971 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high let rec set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Tot (bitsum'_type b) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in bitsum'_type_intro_BitField cl bitsum'_size sz rest begin if low + sz = high && high = bitsum'_size then (v, tl) else (hd, set_valid_bitfield rest tl low high v) end | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k' , set_valid_bitfield (payload k') r' low high v |) let rec bitsum'_key_of_t_set_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma (bitsum'_key_of_t b (set_valid_bitfield b k low high v) == bitsum'_key_of_t b k) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else bitsum'_key_of_t_set_valid_bitfield rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in bitsum'_key_of_t_set_valid_bitfield (payload k') r' low high v let rec get_valid_bitfield_set_valid_bitfield_same (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) : Lemma ( let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low high /\ get_valid_bitfield b k' low high == v ) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_same rest tl low high v | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_same (payload k') r' low high v let rec get_valid_bitfield_set_valid_bitfield_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) (v: bitfield cl (high - low)) (low': nat) (high': nat { is_valid_bitfield b (bitsum'_key_of_t b k) low' high' /\ (high' <= low \/ high <= low') }) : Lemma ( let k' = set_valid_bitfield b k low high v in is_valid_bitfield b (bitsum'_key_of_t b k') low' high' /\ get_valid_bitfield b k' low' high' == get_valid_bitfield b k low' high' ) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low' + sz = high' && high' = bitsum'_size then () else if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_set_valid_bitfield_other rest tl low high v low' high' | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_set_valid_bitfield_other (payload k') r' low high v low' high'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> v: LowParse.BitFields.bitfield cl (high - low) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitSum.synth_bitsum'_recip b (LowParse.Spec.BitSum.set_valid_bitfield b k low high v) == Mkuint_t?.set_bitfield cl (LowParse.Spec.BitSum.synth_bitsum'_recip b k) low high v)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.BitFields.bitfield", "Prims.op_Subtraction", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "LowParse.BitFields.uint_set_bitfield_set_bitfield_same", "LowParse.Spec.BitSum.synth_bitsum'_recip", "Prims.bool", "LowParse.Spec.BitSum.set_valid_bitfield_correct", "Prims.unit", "LowParse.BitFields.uint_set_bitfield_set_bitfield_other", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.enum_repr_of_key", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.l_or", "LowParse.Spec.BitSum.filter_bitsum'", "FStar.UInt.uint_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.set_bitfield", "LowParse.Spec.BitSum.set_valid_bitfield", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec set_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) (v: bitfield cl (high - low)) : Lemma (synth_bitsum'_recip b (set_valid_bitfield b k low high v) == cl.set_bitfield (synth_bitsum'_recip b k) low high v) =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then BF.uint_set_bitfield_set_bitfield_same cl (synth_bitsum'_recip rest tl) low high hd v else (BF.uint_set_bitfield_set_bitfield_other cl (synth_bitsum'_recip rest tl) (bitsum'_size - sz) bitsum'_size hd low high v; set_valid_bitfield_correct rest tl low high v) | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in BF.uint_set_bitfield_set_bitfield_other cl (synth_bitsum'_recip (payload k') r') (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k') low high v; set_valid_bitfield_correct (payload k') r' low high v
false
Vale.Lib.Seqs_s.fst
Vale.Lib.Seqs_s.compose
val compose: f: ('b -> 'c) -> g: ('a -> 'b) -> 'a -> 'c
val compose: f: ('b -> 'c) -> g: ('a -> 'b) -> 'a -> 'c
let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x)
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 67, "end_line": 5, "start_col": 0, "start_line": 5 }
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'b -> 'c) -> g: (_: 'a -> 'b) -> _: 'a -> 'c
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let compose (f: ('b -> 'c)) (g: ('a -> 'b)) : 'a -> 'c =
fun x -> f (g x)
false
Vale.Lib.Seqs_s.fst
Vale.Lib.Seqs_s.seq_map
val seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b
val seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b
let seq_map (#a #b:Type) (f:a -> b) (s:seq a) : seq b = init (length s) (compose f (index s))
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 8, "start_col": 0, "start_line": 7 }
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> s: FStar.Seq.Base.seq a -> FStar.Seq.Base.seq b
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Seq.Base.length", "Vale.Lib.Seqs_s.compose", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.index" ]
[]
false
false
false
true
false
let seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b =
init (length s) (compose f (index s))
false
Vale.Lib.Seqs_s.fst
Vale.Lib.Seqs_s.reverse_seq
val reverse_seq (#a: Type) (s: seq a) : seq a
val reverse_seq (#a: Type) (s: seq a) : seq a
let reverse_seq (#a:Type) (s:seq a) : seq a = init (length s) (fun i -> index s (length s - i - 1))
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 14, "start_col": 0, "start_line": 13 }
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x) let seq_map (#a #b:Type) (f:a -> b) (s:seq a) : seq b = init (length s) (compose f (index s)) let all_but_last (s:seq 'a {length s > 0}) = slice s 0 (length s - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> FStar.Seq.Base.seq a
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Seq.Base.length", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.op_Subtraction" ]
[]
false
false
false
true
false
let reverse_seq (#a: Type) (s: seq a) : seq a =
init (length s) (fun i -> index s (length s - i - 1))
false
Vale.Lib.Seqs_s.fst
Vale.Lib.Seqs_s.all_but_last
val all_but_last : s: FStar.Seq.Base.seq 'a {FStar.Seq.Base.length s > 0} -> FStar.Seq.Base.seq 'a
let all_but_last (s:seq 'a {length s > 0}) = slice s 0 (length s - 1)
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 11, "start_col": 0, "start_line": 10 }
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x) let seq_map (#a #b:Type) (f:a -> b) (s:seq a) : seq b = init (length s) (compose f (index s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq 'a {FStar.Seq.Base.length s > 0} -> FStar.Seq.Base.seq 'a
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let all_but_last (s: seq 'a {length s > 0}) =
slice s 0 (length s - 1)
false
LowParse.Spec.BitSum.fst
LowParse.Spec.BitSum.get_valid_bitfield_correct
val get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high)
val get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high)
let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high
{ "file_name": "src/lowparse/LowParse.Spec.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 55, "end_line": 1868, "start_col": 0, "start_line": 1849 }
module LowParse.Spec.BitSum include LowParse.Spec.Enum include LowParse.BitFields module L = FStar.List.Tot // IMPORTANT: these bitfield operators are defined in a MOST // significant bit (MSB) first fashion. noeq type bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) = | BitStop of (squash (bitsum'_size == 0)) | BitField : (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) -> (rest: bitsum' cl (bitsum'_size - sz)) -> bitsum' cl bitsum'_size | BitSum' : (key: eqtype) -> (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment (e: enum key (bitfield cl key_size)) -> (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) -> bitsum' cl bitsum'_size noextract let rec bitsum'_type' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> (bitfield cl sz & bitsum'_type' rest) | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_type' (payload key)) noextract let bitsum'_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = bitsum'_type' b inline_for_extraction let bitsum'_type_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) : Tot Type = bitfield cl sz & bitsum'_type rest let bitsum'_type_bitsum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) : Tot Type = (k': enum_key e & bitsum'_type (payload k')) noextract noeq type filter_bitsum'_t_attr = [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type (BitSum' key key_size e payload)) : Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) : Tot (bitsum'_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type (BitField sz rest)) : Tot (bitsum'_type_bitfield bitsum'_size sz rest) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_type_bitfield bitsum'_size sz rest) : Tot (bitsum'_type (BitField sz rest)) = x noextract let rec bitsum'_key_type (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot eqtype (decreases (bitsum'_size)) = match b with | BitStop _ -> unit | BitField sz rest -> bitsum'_key_type rest | BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: bitsum'_key_type (BitSum' key key_size e payload)) : Tot (k': enum_key e & bitsum'_key_type (payload k')) = x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitSum' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (x: (k': enum_key e & bitsum'_key_type (payload k'))) : Tot (bitsum'_key_type (BitSum' key key_size e payload)) = x [@filter_bitsum'_t_attr] unfold inline_for_extraction let coerce (t2: Type) (#t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) = (x <: t2) [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_intro_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type rest) : Tot (bitsum'_key_type (BitField sz rest)) = coerce (bitsum'_key_type (BitField sz rest)) x [@filter_bitsum'_t_attr] inline_for_extraction let bitsum'_key_type_elim_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (x: bitsum'_key_type (BitField sz rest)) : Tot (bitsum'_key_type rest) = coerce (bitsum'_key_type rest) x let rec filter_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: t) : Tot bool (decreases (bitsum'_size)) = match b with | BitStop _ -> true | BitField _ rest -> filter_bitsum' rest x | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if list_mem f (list_map snd e) then let k = enum_key_of_repr e f in filter_bitsum' (payload k) x else false let rec synth_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: parse_filter_refine (filter_bitsum' b)) : Tot (bitsum'_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in let k : enum_key e = enum_key_of_repr e f in let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p module BF = LowParse.BitFields #push-options "--z3rlimit 16" let rec synth_bitsum'_injective' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (synth_bitsum' b x == synth_bitsum' b y)) (ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_empty (cl.v x) 0; BF.get_bitfield_empty (cl.v y) 0; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitField sz rest -> assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))); synth_bitsum'_injective' rest x y; assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz))); BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in let k = enum_key_of_repr e f in enum_repr_of_key_of_repr e f; enum_repr_of_key_of_repr e g; assert (cl.v f == cl.v g); synth_bitsum'_injective' (payload k) x y; BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size]; assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) #pop-options let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) : Lemma (synth_injective (synth_bitsum' b)) // [SMTPat (synth_injective (synth_bitsum' b))] = synth_injective_intro' (synth_bitsum' b) (fun x y -> synth_bitsum'_injective' b x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)) ) // #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false" #push-options "--z3rlimit 64" let rec synth_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: parse_filter_refine (filter_bitsum' b)) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); synth_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); let k = enum_key_of_repr e f in let u = synth_bitsum' (payload k) x in let v = synth_bitsum' (payload k) y in assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |)); assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |)); BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size)); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size)); synth_bitsum'_ext (payload k) x y; assert (u == v) #pop-options let parse_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (p: parser k t) : Tot (parser (parse_filter_kind k) (bitsum'_type b)) = synth_bitsum'_injective b; (p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b let rec synth_bitsum'_recip' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot t (decreases (bitsum'_size)) = match b with | BitStop _ -> cl.uint_to_t 0 | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y1 = synth_bitsum'_recip' (payload k) tl in let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in y2 #push-options "--z3rlimit 16" let rec get_bitfield_synth_bitsum'_recip'_other (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) (lo: nat) (hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot }) : Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0)) (decreases (bitsum'_size)) = match b with | BitStop h -> BF.get_bitfield_zero tot lo hi | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi; get_bitfield_synth_bitsum'_recip'_other rest tl lo hi | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi; get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi #pop-options #push-options "--z3rlimit 64" let rec filter_bitsum'_ext (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz); filter_bitsum'_ext rest x y | BitSum' key key_size e payload -> let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size; assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size)); assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g)); assert (f == g); if list_mem f (list_map snd e) then begin let k = enum_key_of_repr e f in BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size); BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) x y end else () #pop-options let rec synth_bitsum'_recip'_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true)) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl); synth_bitsum'_recip'_prop rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t))); enum_key_of_repr_of_key e k; filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl); synth_bitsum'_recip'_prop (payload k) tl inline_for_extraction let synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (parse_filter_refine (filter_bitsum' b)) = synth_bitsum'_recip'_prop b x; synth_bitsum'_recip' b x #push-options "--z3rlimit 16" let rec synth_bitsum'_recip_inverse' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) = match b with | BitStop _ -> () | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip rest tl in (* Part 1/2: synth_bitfield cl 0 header_size header y == hd *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd)); (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz); filter_bitsum'_ext rest y y1; synth_bitsum'_ext rest y y1 ; synth_bitsum'_recip_inverse' rest tl | BitSum' key key_size e payload -> let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in let y = synth_bitsum'_recip b x in let y1 = synth_bitsum'_recip (payload k) tl in (* Part 1/2: k == enum_key_of_repr e f *) BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)); assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k))); enum_key_of_repr_of_key e k; (* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *) BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size); filter_bitsum'_ext (payload k) y y1; synth_bitsum'_ext (payload k) y y1 ; synth_bitsum'_recip_inverse' (payload k) tl #pop-options let synth_bitsum'_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) // [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))] = synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x -> synth_bitsum'_recip_inverse' b x ) let serialize_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) : Tot (serializer (parse_bitsum' b p)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () let serialize_bitsum'_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (s: serializer p) (x: bitsum'_type b) : Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) = synth_bitsum'_injective b; synth_bitsum'_recip_inverse b; serialize_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (s `serialize_filter` filter_bitsum' b) (synth_bitsum'_recip b) () x let rec bitsum'_key_of_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (x: bitsum'_type b) : Tot (bitsum'_key_type b) (decreases (bitsum'_size)) = match b with | BitStop _ -> () | BitField sz rest -> begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with | (_, tl) -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl) end | BitSum' key key_size e payload -> begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with | (| k, pl |) -> bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |) end inline_for_extraction noextract let id (#t: Type) (x: t) : Tot t = x inline_for_extraction noextract noeq type synth_case_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) : Type = | SynthCase: (f: ( (k' : bitsum'_type b) -> type_of_tag (bitsum'_key_of_t b k') -> Tot (refine_with_tag (tag_of_data) k') )) -> (f_inj: ( (k' : bitsum'_type b) -> (pl1: type_of_tag (bitsum'_key_of_t b k')) -> (pl2: type_of_tag (bitsum'_key_of_t b k')) -> Lemma (requires (f k' pl1 == f k' pl2)) (ensures (pl1 == pl2)) )) -> (g: ( (k' : bitsum'_type b) -> refine_with_tag (tag_of_data) k' -> Tot (type_of_tag (bitsum'_key_of_t b k')) )) -> (f_g_eq: ( (k: bitsum'_type b) -> (x: refine_with_tag (tag_of_data) k) -> Lemma (f k (g k x) == x) )) -> synth_case_t b data tag_of_data type_of_tag let synth_case_g_f_eq (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#b: bitsum' cl tot) (#data: Type) (#tag_of_data: (data -> Tot (bitsum'_type b))) (#type_of_tag: (bitsum'_key_type b -> Tot Type)) (s: synth_case_t b data tag_of_data type_of_tag) (k: bitsum'_type b) (x: type_of_tag (bitsum'_key_of_t b k)) : Lemma (s.g k (s.f k x) == x) = s.f_g_eq k (s.f k x); s.f_inj k (s.g k (s.f k x)) x #push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3" let rec weaken_parse_bitsum_cases_kind' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (f: (x: bitsum'_key_type b) -> Tot parser_kind) : Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x))) (decreases (bitsum'_size)) = match b with | BitStop _ -> (| f (), (fun y -> ()) |) | BitField sz rest -> let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in (| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |) | BitSum' key key_size e payload -> let keys : list key = List.Tot.map fst e in let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma (requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x)) (ensures (k `is_weaker_than` f y)))) = if List.Tot.mem x keys then let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in assert (y1 == x); g y2 ) |) else (| default_parser_kind, (fun y -> ()) |) in let k = glb_list_of #key (fun x -> dfst (phi x)) keys in (| k, (fun y -> let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in dsnd (phi y1) y ) |) let weaken_parse_bitsum_cases_kind (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) }) = let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in Classical.forall_intro phi; k let synth_bitsum_case_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_injective (synth_case.f x)) [SMTPat (synth_injective (synth_case.f x))] = synth_injective_intro' (synth_case.f x) (fun y z -> synth_case.f_inj x y z ) let parse_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bitsum'_type b) : Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x)) = let tg : bitsum'_key_type b = bitsum'_key_of_t b x in let (| k_, p |) = f tg in weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) inline_for_extraction let parse_bitsum_kind (kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot parser_kind = and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) let parse_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) : Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) = parse_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) module Seq = FStar.Seq #push-options "--z3rlimit 16" let parse_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with | None -> None | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end )) = parse_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) (parse_bitsum' b p) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) (parse_bitsum_cases b tag_of_data type_of_tag synth_case f) x; match parse (parse_bitsum' b p) x with | None -> () | Some (tg, consumed1) -> let k = bitsum'_key_of_t b tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg; parse_synth_eq (dsnd (f k)) (synth_case.f tg) (Seq.slice x consumed1 (Seq.length x)) #pop-options let parse_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (x: bytes) : Lemma (parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with | None -> None | Some (tg', consumed1) -> if filter_bitsum' b tg' then let tg = synth_bitsum' b tg' in let k = bitsum'_key_of_t b tg in begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with | None -> None | Some (y, consumed2) -> Some ((synth_case.f tg y <: data), consumed1 + consumed2) end else None )) = parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x; synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x; parse_filter_eq p (filter_bitsum' b) x let synth_bitsum_case_recip_inverse (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (x: bitsum'_type b) : Lemma (synth_inverse (synth_case.f x) (synth_case.g x)) [SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY? = synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y -> synth_case.f_g_eq x y ) let serialize_bitsum_cases (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: bitsum'_type b) : Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x)) = let tg = bitsum'_key_of_t b x in let (| _, p |) = f tg in synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger? serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (serialize_synth p (synth_case.f x) (g tg) (synth_case.g x) ()) let serialize_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) : Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = serialize_tagged_union #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) let serialize_bitsum_alt (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : GTot bytes = let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in let payload = synth_case.g tg x in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x) = serialize_tagged_union_eq #(parse_filter_kind kt) #(bitsum'_type b) #(parse_bitsum' b p) (serialize_bitsum' b s) #(data) (tag_of_data) #(weaken_parse_bitsum_cases_kind b type_of_tag f) #(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) (serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g) x; let tg = tag_of_data x in let k = bitsum'_key_of_t b tg in serialize_bitsum'_eq b s tg; let (| _, p |) = f k in serialize_synth_eq #_ #(type_of_tag k) p (synth_case.f tg) (g k) (synth_case.g tg) () x let serialize_bitsum_eq' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (x: data) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x let serialize_bitsum_alt_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : GTot bytes = let k = bitsum'_key_of_t b tg in serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload let serialize_bitsum_eq_2 (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (s: serializer p { kt.parser_kind_subkind == Some ParserStrong } ) (#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x)))) (tg: bitsum'_type b) (payload: type_of_tag (bitsum'_key_of_t b tg)) : Lemma (serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload) = serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload); synth_case_g_f_eq synth_case tg payload (* Implementation of filter_bitsum' *) inline_for_extraction noextract let filter_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: t) -> Tot (y: bool { y == filter_bitsum' b x }) inline_for_extraction let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun _ -> true inline_for_extraction let filter_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: filter_bitsum'_t rest) : Tot (filter_bitsum'_t (BitField sz rest)) = fun x -> phi x inline_for_extraction let filter_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) }))) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k))) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in if not (is_valid_repr r) then false else destr_payload (key_of r) x inline_for_extraction noextract let filter_bitsum'_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x }) inline_for_extraction let filter_bitsum'_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e) : Tot (filter_bitsum'_t (BitSum' key key_size e payload)) = fun x -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi x xr inline_for_extraction let filter_bitsum'_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e []) = (fun x xr -> false) inline_for_extraction let filter_bitsum'_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: filter_bitsum'_t (payload k)) (destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun x xr -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload x else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail (x <: t) xr let bitsum_wellfoundedness (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b:bitsum' cl bitsum'_size { BitSum'? b }) : Lemma (let BitSum' key key_size e payload = b in (forall (k:enum_key e). payload k << b)) = () [@filter_bitsum'_t_attr] noextract let rec mk_filter_bitsum'_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (filter_bitsum'_t b) (decreases %[b; 1; ()]) = match b with | BitStop _ -> filter_bitsum'_bitstop cl | BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest) | BitSum' key key_size e payload -> filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e) and mk_filter_bitsum'_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_filter_bitsum'_t' (payload k)) (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Universal destructor *) inline_for_extraction let if_combinator_weak (t: Type) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t) inline_for_extraction noextract let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(a + 1)) = (u: (bitsum'_type b -> Tot (Type u#a))) -> (u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) -> (f: ((k: bitsum'_type b) -> Tot (u k))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (u (synth_bitsum' b x)) inline_for_extraction let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) = fun u u_if f x -> f () inline_for_extraction let destr_bitsum'_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: destr_bitsum'_t rest) : Tot (destr_bitsum'_t (BitField sz rest)) = fun u u_if f x -> phi (fun z -> u (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) (fun z -> u_if (Ghost.hide (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, Ghost.reveal z))) (fun z -> f (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, z)) x inline_for_extraction let destr_bitsum'_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ( (x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (destr_bitsum'_t (payload k)))) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> [@inline_let] let r : enum_repr e = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k : enum_key e = key_of r in destr_payload k (fun z -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) (fun z -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal z |)))) (fun z -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, z |))) x module L = FStar.List.Tot inline_for_extraction noextract let destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(a + 1)) = (u: (bitsum'_type (BitSum' key key_size e payload) -> Tot (Type u#a))) -> (u_if: ((x: Ghost.erased (bitsum'_type (BitSum' key key_size e payload))) -> Tot (if_combinator_weak (u (Ghost.reveal x))))) -> (f: ((x: bitsum'_type (BitSum' key key_size e payload)) -> Tot (u x))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> Tot (u (synth_bitsum' (BitSum' key key_size e payload) x)) inline_for_extraction let destr_bitsum'_bitsum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) : Tot (destr_bitsum'_t (BitSum' key key_size e payload)) = fun u u_if f x -> phi u u_if f x inline_for_extraction let destr_bitsum'_bitsum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload e []) = (fun u u_if f x -> assert False; false_elim ()) #push-options "--z3rlimit 32" inline_for_extraction let destr_bitsum'_bitsum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: destr_bitsum'_t (payload k)) (destr_tail: destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let cond = ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r) in u_if (Ghost.hide (synth_bitsum' (BitSum' key key_size e payload) x)) cond (fun cond_true -> destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x ) (fun cond_false -> [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u u_if f (x <: t) ) inline_for_extraction let destr_bitsum'_bitsum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` [(k, r)] /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r }) (destr_payload: destr_bitsum'_t (payload k)) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 [(k, r)]) = fun u u_if f x -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash ((cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) = if (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) = r then () else begin L.append_assoc l1 [(k, r)] []; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) end in destr_payload (fun x -> u (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> u_if (Ghost.hide (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, Ghost.reveal x |)))) (fun x -> f (bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x [@filter_bitsum'_t_attr] noextract let rec mk_destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (destr_bitsum'_t b <: Type u#1) (decreases %[b;1;()]) = match b with | BitStop _ -> destr_bitsum'_bitstop cl | BitField sz rest -> destr_bitsum'_bitfield cl bitsum'_size sz rest (mk_destr_bitsum'_t rest) | BitSum' key key_size e payload -> destr_bitsum'_bitsum_intro cl bitsum'_size key key_size e payload (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload [] e) and mk_destr_bitsum'_bitsum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload l1 l2 <: Type u#1) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in destr_bitsum'_bitsum_nil cl bitsum'_size key key_size e payload () | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in destr_bitsum'_bitsum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_destr_bitsum'_t (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in destr_bitsum'_bitsum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_destr_bitsum'_t (payload k)) (mk_destr_bitsum'_bitsum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* from a bitsum key to its representation *) inline_for_extraction let synth_bitsum'_recip_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot Type = (x: bitsum'_type b) -> Tot (y: t { y == synth_bitsum'_recip b x }) inline_for_extraction let synth_bitsum'_recip_BitStop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (synth_bitsum'_recip_t #tot #t #cl #0 (BitStop ())) = fun _ -> cl.uint_to_t 0 inline_for_extraction let synth_bitsum'_recip_BitField (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (ih: synth_bitsum'_recip_t rest) : Tot (synth_bitsum'_recip_t (BitField sz rest)) = fun x -> [@inline_let] let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in cl.set_bitfield (ih tl) (bitsum'_size - sz) (bitsum'_size) hd inline_for_extraction let synth_bitsum'_recip_BitSum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (repr_of: ( (k: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e k }) )) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (synth_payload: ((k: enum_key e) -> Tot (synth_bitsum'_recip_t (payload k)))) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in cl.set_bitfield (synth_payload k pl) (bitsum'_size - key_size) bitsum'_size (repr_of k) inline_for_extraction noextract let synth_bitsum'_recip_BitSum_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot Type = (k: enum_key e { ~ (list_mem (k <: key) (list_map fst l1)) }) -> (pl: bitsum'_type (payload k)) -> Tot (y: t { y == synth_bitsum'_recip (BitSum' key key_size e payload) (| k, pl |) } ) inline_for_extraction let synth_bitsum'_recip_BitSum_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload [] e) : Tot (synth_bitsum'_recip_t (BitSum' key key_size e payload)) = fun x -> [@inline_let] let (| k, pl |) = x in phi k pl inline_for_extraction let synth_bitsum'_recip_BitSum_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size) { e == l1 `L.append` [] } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 []) = fun k _ -> [@inline_let] let _ = L.append_l_nil l1 in false_elim () inline_for_extraction let synth_bitsum'_recip_BitSum_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: synth_bitsum'_recip_t (payload k)) (destr_tail: synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in if k' = k then begin [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) end else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) in destr_tail (k' <: key) rest inline_for_extraction let synth_bitsum'_recip_BitSum_cons_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size { e == l1 `L.append` ((k, r) :: []) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` [] }) (destr_payload: synth_bitsum'_recip_t (payload k)) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 ((k, r) :: [])) = fun k' rest -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) [] in [@inline_let] let _ : squash (k' = k) = if (k' = k) then () else begin L.append_assoc l1 [(k, r)] []; L.map_append fst l1 [(k, r)]; L.append_mem (L.map fst l1) (L.map fst [(k, r)]) (k' <: key) end in [@inline_let] let _ = assert_norm (synth_bitsum'_recip (BitSum' key key_size e payload) (| k', rest |) == cl.set_bitfield (synth_bitsum'_recip (payload k') rest) (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k')) in (cl.set_bitfield (destr_payload rest) (bitsum'_size - key_size) bitsum'_size r <: t) [@filter_bitsum'_t_attr] noextract let rec mk_synth_bitsum'_recip (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (synth_bitsum'_recip_t b) (decreases %[b;1;()]) = match b with | BitStop _ -> synth_bitsum'_recip_BitStop cl | BitField sz rest -> synth_bitsum'_recip_BitField cl bitsum'_size sz rest (mk_synth_bitsum'_recip rest) | BitSum' key key_size e payload -> synth_bitsum'_recip_BitSum_intro cl bitsum'_size key key_size e payload (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload [] e) and mk_synth_bitsum'_recip_BitSum (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (synth_bitsum'_recip_BitSum_t cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; 0; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in synth_bitsum'_recip_BitSum_nil cl bitsum'_size key key_size e payload l1 | [(k, r)] -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) []; L.append_assoc l1 [(k, r)] [] in synth_bitsum'_recip_BitSum_cons_nil cl bitsum'_size key key_size e payload l1 k r (mk_synth_bitsum'_recip (payload k)) | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in synth_bitsum'_recip_BitSum_cons cl bitsum'_size key key_size e payload l1 k r q (mk_synth_bitsum'_recip (payload k)) (mk_synth_bitsum'_recip_BitSum cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q) (* Mutating a bitfield within a bitsum value *) let rec is_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : GTot bool = match b with | BitStop _ -> false | BitField sz rest -> if low + sz = high && high = bitsum'_size then true else is_valid_bitfield rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield (payload k') r' low high let rec is_valid_bitfield_prop (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_key_type b) (low high: nat) : Lemma (requires (is_valid_bitfield b k low high)) (ensures ( low <= high /\ high <= bitsum'_size )) [SMTPat (is_valid_bitfield b k low high)] = match b with | BitField sz rest -> if low + sz = high && high = bitsum'_size then () else is_valid_bitfield_prop rest (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest k) low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload k in is_valid_bitfield_prop (payload k') r' low high let rec get_valid_bitfield (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat { is_valid_bitfield b (bitsum'_key_of_t b k) low high }) : Tot (bitfield cl (high - low)) = match b with | BitField sz rest -> let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then hd else get_valid_bitfield rest tl low high | BitSum' key key_size e payload -> let (| k', r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield (payload k') r' low high
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 8, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> k: LowParse.Spec.BitSum.bitsum'_type b -> low: Prims.nat -> high: Prims.nat { LowParse.Spec.BitSum.is_valid_bitfield b (LowParse.Spec.BitSum.bitsum'_key_of_t b k) low high } -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitSum.get_valid_bitfield b k low high == Mkuint_t?.get_bitfield cl (LowParse.Spec.BitSum.synth_bitsum'_recip b k) low high)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "Prims.b2t", "LowParse.Spec.BitSum.is_valid_bitfield", "LowParse.Spec.BitSum.bitsum'_key_of_t", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.BitFields.bitfield", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.bool", "LowParse.Spec.BitSum.get_valid_bitfield_correct", "Prims.unit", "LowParse.Spec.BitSum.bitsum'_type_bitfield", "LowParse.Spec.BitSum.bitsum'_type_elim_BitField", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'_type_bitsum'", "LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.l_or", "Prims.op_LessThan", "LowParse.BitFields.__proj__Mkuint_t__item__v", "Prims.pow2", "FStar.UInt.uint_t", "LowParse.BitFields.get_bitfield", "LowParse.Spec.BitSum.synth_bitsum'_recip", "LowParse.Spec.BitSum.get_valid_bitfield", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec get_valid_bitfield_correct (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) (k: bitsum'_type b) (low: nat) (high: nat{is_valid_bitfield b (bitsum'_key_of_t b k) low high}) : Lemma (get_valid_bitfield b k low high == cl.get_bitfield (synth_bitsum'_recip b k) low high) =
match b with | BitField sz rest -> let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest k in if low + sz = high && high = bitsum'_size then () else get_valid_bitfield_correct rest tl low high | BitSum' key key_size e payload -> let (| k' , r' |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload k in get_valid_bitfield_correct (payload k') r' low high
false
CQueue.fst
CQueue.dequeue
val dequeue (#a: Type) (x: t a) (l: Ghost.erased (v a)) : Steel (a & Ghost.erased (v a)) (queue x l) (fun res -> queue x (snd res)) (requires (fun _ -> Cons? (datas l) == true)) (ensures (fun _ res _ -> datas l == fst res :: datas (snd res)))
val dequeue (#a: Type) (x: t a) (l: Ghost.erased (v a)) : Steel (a & Ghost.erased (v a)) (queue x l) (fun res -> queue x (snd res)) (requires (fun _ -> Cons? (datas l) == true)) (ensures (fun _ res _ -> datas l == fst res :: datas (snd res)))
let dequeue #a x l = let head0 = elim_queue_head x l in let head = read (cllist_head x) in let u = elim_llist_fragment_head_cons l (cllist_head x) head0 in change_equal_slprop (ccell head0) (ccell head); let head = elim_ccell head in let data = read (ccell_data head) in let next = read (ccell_next head) in intro_ccell head; free_cell head; llist_fragment_head_is_nil u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next; assert (Nil? u.ll_uncons_tl == ccell_ptrvalue_is_null next); write (cllist_head x) next; if ccell_ptrvalue_is_null next then begin elim_llist_fragment_head_nil u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next; write (cllist_tail x) (cllist_head x); intro_llist_fragment_head_nil [] (cllist_head x) (Ghost.reveal (Ghost.hide next)); intro_queue_head x [] next; let res = (data, Ghost.hide []) in change_equal_slprop (queue_head x []) (queue x (snd res)); return res end else begin llist_fragment_head_cons_change_phead u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next (cllist_head x); intro_queue_head x u.ll_uncons_tl u.ll_uncons_next; let res = (data, u.ll_uncons_tl) in change_equal_slprop (queue_head x u.ll_uncons_tl) (queue x (snd res)); return res end
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 1367, "start_col": 0, "start_line": 1333 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x) [@@__steel_reduce__; __reduce__] let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b let vbind_hp // necessary to hide the attribute on hp_of (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) = hp_of (vbind0 a t b) let vbind_sel // same for hp_sel (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot (selector t (vbind_hp a t b)) = sel_of (vbind0 a t b) [@@__steel_reduce__] let vbind' (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot vprop' = { hp = vbind_hp a t b; t = t; sel = vbind_sel a t b; } [@@__steel_reduce__] let vbind (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = VUnit (vbind' a t b) let intro_vbind (#opened: _) (a: vprop) (b' : vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost unit opened (a `star` b') (fun _ -> vbind a t b) (fun h -> t_of b' == t /\ b' == b (h a)) (fun h _ h' -> t_of b' == t /\ b' == b (h a) /\ h' (vbind a t b) == h b' ) = intro_vpure (t == t_of b'); intro_vdep a (vpure (t == t_of b') `star` b') (vbind0_payload a t b); intro_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); change_slprop_rel (vbind0 a t b) (vbind a t b) (fun x y -> x == y) (fun _ -> ()) let elim_vbind (#opened: _) (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost (Ghost.erased (t_of a)) opened (vbind a t b) (fun res -> a `star` b (Ghost.reveal res)) (fun h -> True) (fun h res h' -> h' a == Ghost.reveal res /\ t == t_of (b (Ghost.reveal res)) /\ h' (b (Ghost.reveal res)) == h (vbind a t b) ) = change_slprop_rel (vbind a t b) (vbind0 a t b) (fun x y -> x == y) (fun _ -> ()); elim_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); let res = elim_vdep a (vbind0_payload a t b) in change_equal_slprop (vbind0_payload a t b (Ghost.reveal res)) (vpure (t == t_of (b (Ghost.reveal res))) `star` b (Ghost.reveal res)); elim_vpure (t == t_of (b (Ghost.reveal res))); res let (==) (#a:_) (x y: a) : prop = x == y let snoc_inj (#a: Type) (hd1 hd2: list a) (tl1 tl2: a) : Lemma (requires (hd1 `L.append` [tl1] == hd2 `L.append` [tl2])) (ensures (hd1 == hd2 /\ tl1 == tl2)) [SMTPat (hd1 `L.append` [tl1]); SMTPat (hd2 `L.append` [tl2])] = L.lemma_snoc_unsnoc (hd1, tl1); L.lemma_snoc_unsnoc (hd2, tl2) [@"opaque_to_smt"] let unsnoc (#a: Type) (l: list a) : Pure (list a & a) (requires (Cons? l)) (ensures (fun (hd, tl) -> l == hd `L.append` [tl] /\ L.length hd < L.length l)) = L.lemma_unsnoc_snoc l; L.append_length (fst (L.unsnoc l)) [snd (L.unsnoc l)]; L.unsnoc l let unsnoc_hd (#a: Type) (l: list a) : Pure (list a) (requires (Cons? l)) (ensures (fun l' -> L.length l' < L.length l)) = fst (unsnoc l) let unsnoc_tl (#a: Type) (l: list a) : Pure (a) (requires (Cons? l)) (ensures (fun _ -> True)) = snd (unsnoc l) [@@"opaque_to_smt"] let snoc (#a: Type) (l: list a) (x: a) : Pure (list a) (requires True) (ensures (fun l' -> Cons? l' /\ unsnoc_hd l' == l /\ unsnoc_tl l' == x )) = let l' = L.snoc (l, x) in L.append_length l [x]; snoc_inj l (unsnoc_hd l') x (unsnoc_tl l'); l' let snoc_unsnoc (#a: Type) (l: list a) : Lemma (requires (Cons? l)) (ensures (snoc (unsnoc_hd l) (unsnoc_tl l) == l)) = () unfold let coerce (#a: Type) (x: a) (b: Type) : Pure b (requires (a == b)) (ensures (fun y -> a == b /\ x == y)) = x (* END library *) let t a = cllist_lvalue a let v (a: Type0) = list a let datas (#a: Type0) (l: v a) : Tot (list a) = l (* view from the tail *) let llist_fragment_tail_cons_data_refine (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (d: a) : Tot prop = d == unsnoc_tl (Ghost.reveal l) [@@ __steel_reduce__] let llist_fragment_tail_cons_lvalue_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (c: ccell_lvalue a) : Tot vprop = vptr (ccell_data c) `vrefine` llist_fragment_tail_cons_data_refine l let ccell_is_lvalue_refine (a: Type) (c: ccell_ptrvalue a) : Tot prop = ccell_ptrvalue_is_null c == false [@@ __steel_reduce__ ] let llist_fragment_tail_cons_next_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (ptail: ref (ccell_ptrvalue a)) : Tot vprop = vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l [@@ __steel_reduce__ ] let llist_fragment_tail_cons_rewrite (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (llist_fragment_tail: vprop { t_of llist_fragment_tail == ref (ccell_ptrvalue a) }) (x: normal (t_of (llist_fragment_tail `vdep` (llist_fragment_tail_cons_next_payload l)))) : Tot (ref (ccell_ptrvalue a)) = let (| _, (| c, _ |) |) = x in ccell_next c let rec llist_fragment_tail (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Pure vprop (requires True) (ensures (fun v -> t_of v == ref (ccell_ptrvalue a))) (decreases (Ghost.reveal (L.length l))) = if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) let llist_fragment_tail_eq (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) = assert_norm (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) let llist_fragment_tail_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (requires (Cons? l)) (ensures (Cons? l /\ llist_fragment_tail l phead == ( llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) ))) = llist_fragment_tail_eq l phead unfold let sel_llist_fragment_tail (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_tail l phead) /\ True) }) : GTot (ref (ccell_ptrvalue a)) = coerce (h (llist_fragment_tail l phead)) (ref (ccell_ptrvalue a)) val intro_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened emp (fun _ -> llist_fragment_tail l phead) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_tail l phead h' == phead) let intro_llist_fragment_tail_nil l phead = intro_vconst phead; change_equal_slprop (vconst phead) (llist_fragment_tail l phead) val elim_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l phead) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_tail l phead h == phead) let elim_llist_fragment_tail_nil l phead = change_equal_slprop (llist_fragment_tail l phead) (vconst phead); elim_vconst phead val intro_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: Ghost.erased (ref (ccell_ptrvalue a))) (tail: Ghost.erased (ccell_lvalue a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l phead `star` vptr ptail `star` vptr (ccell_data tail)) (fun res -> llist_fragment_tail res phead) (fun h -> sel_llist_fragment_tail l phead h == Ghost.reveal ptail /\ sel ptail h == Ghost.reveal tail ) (fun h res h' -> Ghost.reveal res == snoc (Ghost.reveal l) (sel (ccell_data tail) h) /\ sel_llist_fragment_tail res phead h' == ccell_next tail ) #push-options "--z3rlimit 16" let intro_llist_fragment_tail_snoc #_ #a l phead ptail tail = let d = gget (vptr (ccell_data tail)) in let l' : (l' : Ghost.erased (list a) { Cons? (Ghost.reveal l') }) = Ghost.hide (snoc (Ghost.reveal l) (Ghost.reveal d)) in intro_vrefine (vptr (ccell_data tail)) (llist_fragment_tail_cons_data_refine l'); intro_vrefine (vptr ptail) (ccell_is_lvalue_refine a); intro_vdep (vptr ptail `vrefine` ccell_is_lvalue_refine a) (vptr (ccell_data tail) `vrefine` llist_fragment_tail_cons_data_refine l') (llist_fragment_tail_cons_lvalue_payload l'); change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead); intro_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead) (vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l') (llist_fragment_tail_cons_next_payload l'); intro_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l') (llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)); llist_fragment_tail_eq_cons l' phead; change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l' `vrewrite` llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)) (llist_fragment_tail l' phead); let g' = gget (llist_fragment_tail l' phead) in assert (Ghost.reveal g' == ccell_next tail); noop (); l' #pop-options [@@erasable] noeq type ll_unsnoc_t (a: Type) = { ll_unsnoc_l: list a; ll_unsnoc_ptail: ref (ccell_ptrvalue a); ll_unsnoc_tail: ccell_lvalue a; } val elim_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost (ll_unsnoc_t a) opened (llist_fragment_tail l phead) (fun res -> llist_fragment_tail res.ll_unsnoc_l phead `star` vptr res.ll_unsnoc_ptail `star` vptr (ccell_data res.ll_unsnoc_tail)) (fun _ -> Cons? l) (fun h res h' -> Cons? l /\ Ghost.reveal res.ll_unsnoc_l == unsnoc_hd l /\ sel res.ll_unsnoc_ptail h' == res.ll_unsnoc_tail /\ sel (ccell_data res.ll_unsnoc_tail) h'== unsnoc_tl l /\ sel_llist_fragment_tail res.ll_unsnoc_l phead h' == res.ll_unsnoc_ptail /\ sel_llist_fragment_tail l phead h == (ccell_next res.ll_unsnoc_tail) ) #push-options "--z3rlimit 32" #restart-solver let elim_llist_fragment_tail_snoc #_ #a l phead = let l0 : (l0: Ghost.erased (list a) { Cons? l0 }) = Ghost.hide (Ghost.reveal l) in llist_fragment_tail_eq_cons l0 phead; change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0 `vrewrite` llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); elim_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0) (llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); let ptail = elim_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail_cons_next_payload l0) in let ptail0 : Ghost.erased (ref (ccell_ptrvalue a)) = ptail in change_equal_slprop (llist_fragment_tail_cons_next_payload l0 (Ghost.reveal ptail)) (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l0); let tail = elim_vdep (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a) (llist_fragment_tail_cons_lvalue_payload l0) in elim_vrefine (vptr (Ghost.reveal ptail0)) (ccell_is_lvalue_refine a); let res = { ll_unsnoc_l = unsnoc_hd l0; ll_unsnoc_ptail = Ghost.reveal ptail0; ll_unsnoc_tail = Ghost.reveal tail; } in change_equal_slprop (vptr (Ghost.reveal ptail0)) (vptr res.ll_unsnoc_ptail); change_equal_slprop (llist_fragment_tail_cons_lvalue_payload l0 (Ghost.reveal tail)) (vptr (ccell_data res.ll_unsnoc_tail) `vrefine` llist_fragment_tail_cons_data_refine l0); elim_vrefine (vptr (ccell_data res.ll_unsnoc_tail)) (llist_fragment_tail_cons_data_refine l0); change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail res.ll_unsnoc_l phead); res #pop-options let rec llist_fragment_tail_append (#opened: _) (#a: Type) (phead0: ref (ccell_ptrvalue a)) (l1: Ghost.erased (list a)) (phead1: Ghost.erased (ref (ccell_ptrvalue a))) (l2: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l1 phead0 `star` llist_fragment_tail l2 phead1) (fun res -> llist_fragment_tail res phead0) (fun h -> Ghost.reveal phead1 == (sel_llist_fragment_tail l1 phead0) h ) (fun h res h' -> Ghost.reveal res == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ (sel_llist_fragment_tail res phead0) h' == (sel_llist_fragment_tail l2 phead1) h ) (decreases (L.length (Ghost.reveal l2))) = let g1 = gget (llist_fragment_tail l1 phead0) in assert (Ghost.reveal phead1 == Ghost.reveal g1); if Nil? l2 then begin L.append_l_nil (Ghost.reveal l1); elim_llist_fragment_tail_nil l2 phead1; l1 end else begin let res = elim_llist_fragment_tail_snoc l2 (Ghost.reveal phead1) in let d = gget (vptr (ccell_data res.ll_unsnoc_tail)) in L.append_assoc (Ghost.reveal l1) (Ghost.reveal res.ll_unsnoc_l) [Ghost.reveal d]; let l3 = llist_fragment_tail_append phead0 l1 phead1 res.ll_unsnoc_l in intro_llist_fragment_tail_snoc l3 phead0 res.ll_unsnoc_ptail res.ll_unsnoc_tail end let queue_tail_refine (#a: Type) (tail1: ref (ccell_ptrvalue a)) (tail2: ref (ccell_ptrvalue a)) (tl: normal (t_of (vptr tail2))) : Tot prop = ccell_ptrvalue_is_null tl == true /\ tail1 == tail2 [@@__steel_reduce__] let queue_tail_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) (tail2: ref (ccell_ptrvalue a)) : Tot vprop = vptr tail2 `vrefine` queue_tail_refine tail1 tail2 [@@__steel_reduce__] let queue_tail_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) : Tot vprop = vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail1 [@@__steel_reduce__; __reduce__] let queue_tail (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = llist_fragment_tail l (cllist_head x) `vdep` queue_tail_dep1 x l val intro_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun _ -> queue_tail x l) (fun h -> sel_llist_fragment_tail l (cllist_head x) h == tail /\ sel (cllist_tail x) h == tail /\ ccell_ptrvalue_is_null (sel tail h) ) (fun _ _ _ -> True) let intro_queue_tail x l tail = intro_vrefine (vptr tail) (queue_tail_refine tail tail); intro_vdep2 (vptr (cllist_tail x)) (vptr tail `vrefine` queue_tail_refine tail tail) tail (queue_tail_dep2 x l tail); intro_vdep2 (llist_fragment_tail l (cllist_head x)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail) tail (queue_tail_dep1 x l) val elim_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (queue_tail x l) (fun tail -> llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun h -> True) (fun _ tail h -> sel_llist_fragment_tail l (cllist_head x) h == Ghost.reveal tail /\ sel (cllist_tail x) h == Ghost.reveal tail /\ ccell_ptrvalue_is_null (h (vptr tail)) ) let elim_queue_tail #_ #a x l = let tail0 = elim_vdep (llist_fragment_tail l (cllist_head x)) (queue_tail_dep1 x l) in let tail : Ghost.erased (ref (ccell_ptrvalue a)) = tail0 in change_equal_slprop (queue_tail_dep1 x l (Ghost.reveal tail0)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail0); let tail2 = elim_vdep (vptr (cllist_tail x)) (queue_tail_dep2 x l tail0) in let tail3 : Ghost.erased (ref (ccell_ptrvalue a)) = tail2 in change_equal_slprop (queue_tail_dep2 x l tail0 (Ghost.reveal tail2)) (vptr tail3 `vrefine` queue_tail_refine tail0 tail3); elim_vrefine (vptr tail3) (queue_tail_refine tail0 tail3); change_equal_slprop (vptr tail3) (vptr tail); tail (* view from the head *) let llist_fragment_head_data_refine (#a: Type) (d: a) (c: vcell a) : Tot prop = c.vcell_data == d let llist_fragment_head_payload (#a: Type) (head: ccell_ptrvalue a) (d: a) (llist_fragment_head: (ref (ccell_ptrvalue a) -> ccell_ptrvalue a -> Tot vprop)) (x: t_of (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine d))) : Tot vprop = llist_fragment_head (ccell_next (fst x)) (snd x).vcell_next let rec llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Tot vprop (decreases (Ghost.reveal l)) = if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) let t_of_llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (t_of (llist_fragment_head l phead head) == ref (ccell_ptrvalue a) & ccell_ptrvalue a) = () unfold let sel_llist_fragment_head (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_head l phead head) /\ True) }) : GTot (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = coerce (h (llist_fragment_head l phead head)) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) val intro_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened emp (fun _ -> llist_fragment_head l phead head) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_head l phead head h' == (phead, head)) let intro_llist_fragment_head_nil l phead head = intro_vconst (phead, head); change_equal_slprop (vconst (phead, head)) (llist_fragment_head l phead head) val elim_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_head l phead head h == (phead, head)) let elim_llist_fragment_head_nil l phead head = change_equal_slprop (llist_fragment_head l phead head) (vconst (phead, head)); elim_vconst (phead, head) let llist_fragment_head_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (requires (Cons? (Ghost.reveal l))) (ensures ( llist_fragment_head l phead head == vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) = assert_norm (llist_fragment_head l phead head == ( if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) val intro_llist_fragment_head_cons (#opened: _) (#a: Type) (phead: ref (ccell_ptrvalue a)) (head: ccell_lvalue a) (next: (ccell_ptrvalue a)) (tl: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (ccell head `star` llist_fragment_head tl (ccell_next head) next) (fun res -> llist_fragment_head res phead head) (fun h -> (h (ccell head)).vcell_next == next) (fun h res h' -> Ghost.reveal res == (h (ccell head)).vcell_data :: Ghost.reveal tl /\ h' (llist_fragment_head res phead head) == h (llist_fragment_head tl (ccell_next head) next) ) let intro_llist_fragment_head_cons #_ #a phead head next tl = let vc = gget (ccell head) in let l' : (l' : Ghost.erased (list a) { Cons? l' }) = Ghost.hide (vc.vcell_data :: tl) in intro_ccell_is_lvalue head; intro_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l')); intro_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (llist_fragment_head tl (ccell_next head) next) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l'))); llist_fragment_head_eq_cons l' phead head; change_equal_slprop (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l')))) (llist_fragment_head l' phead head); l' [@@erasable] noeq type ll_uncons_t (a: Type) = { ll_uncons_pnext: Ghost.erased (ref (ccell_ptrvalue a)); ll_uncons_next: Ghost.erased (ccell_ptrvalue a); ll_uncons_tl: Ghost.erased (list a); } val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) ) let elim_llist_fragment_head_cons #_ #a l0 phead head = let l : (l : Ghost.erased (list a) { Cons? l }) = l0 in change_equal_slprop (llist_fragment_head l0 phead head) (llist_fragment_head l phead head); llist_fragment_head_eq_cons l phead head; change_equal_slprop (llist_fragment_head l phead head) (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)))); let x = elim_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l))) in let head2 = gget (ccell_is_lvalue head) in elim_ccell_is_lvalue head; elim_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l)); let vhead2 = gget (ccell head) in let res = { ll_uncons_pnext = ccell_next head2; ll_uncons_next = vhead2.vcell_next; ll_uncons_tl = L.tl l; } in change_equal_slprop (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)) (Ghost.reveal x)) (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next); res let rec llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_head l1 phead1 head1 `star` llist_fragment_head l2 phead2 head2) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2) ) (decreases (Ghost.reveal l1)) = if Nil? l1 then begin elim_llist_fragment_head_nil l1 phead1 head1; change_equal_slprop (llist_fragment_head l2 phead2 head2) (llist_fragment_head l2 phead1 head1); l2 end else begin let u = elim_llist_fragment_head_cons l1 phead1 head1 in let head1' : Ghost.erased (ccell_lvalue a) = head1 in let l3 = llist_fragment_head_append u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next l2 phead2 head2 in change_equal_slprop (llist_fragment_head l3 u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head l3 (ccell_next head1') u.ll_uncons_next); change_equal_slprop (ccell head1) (ccell head1'); let l4 = intro_llist_fragment_head_cons phead1 head1' u.ll_uncons_next l3 in change_equal_slprop (llist_fragment_head l4 phead1 head1') (llist_fragment_head l4 phead1 head1); l4 end let rec llist_fragment_head_to_tail (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (vptr phead `star` llist_fragment_head l phead head) (fun res -> llist_fragment_tail l phead `star` vptr res) (fun h -> h (vptr phead) == head) (fun h res h' -> let v = sel_llist_fragment_head l phead head h in fst v == Ghost.reveal res /\ fst v == sel_llist_fragment_tail l phead h' /\ snd v == h' (vptr res) ) (decreases (L.length (Ghost.reveal l))) = if Nil? l then begin let ptail = Ghost.hide phead in let gh = gget (vptr phead) in assert (Ghost.reveal gh == head); elim_llist_fragment_head_nil l phead head; intro_llist_fragment_tail_nil l phead; change_equal_slprop (vptr phead) (vptr ptail); ptail end else begin intro_llist_fragment_tail_nil [] phead; change_equal_slprop (vptr phead) (vptr (Ghost.reveal (Ghost.hide phead))); let uc = elim_llist_fragment_head_cons l phead head in let head' = elim_ccell_ghost head in change_equal_slprop (vptr (ccell_next head')) (vptr uc.ll_uncons_pnext); let lc = intro_llist_fragment_tail_snoc [] phead phead head' in let ptail = llist_fragment_head_to_tail uc.ll_uncons_tl uc.ll_uncons_pnext uc.ll_uncons_next in let l' = llist_fragment_tail_append phead lc uc.ll_uncons_pnext uc.ll_uncons_tl in change_equal_slprop (llist_fragment_tail l' phead) (llist_fragment_tail l phead); ptail end #push-options "--z3rlimit 16" #restart-solver let rec llist_fragment_tail_to_head (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: ref (ccell_ptrvalue a)) : SteelGhost (Ghost.erased (ccell_ptrvalue a)) opened (llist_fragment_tail l phead `star` vptr ptail) (fun head -> vptr phead `star` llist_fragment_head l phead (Ghost.reveal head)) (fun h -> Ghost.reveal ptail == sel_llist_fragment_tail l phead h) (fun h head h' -> let v = sel_llist_fragment_head l phead head h' in fst v == ptail /\ snd v == h (vptr ptail) /\ h' (vptr phead) == Ghost.reveal head ) (decreases (L.length (Ghost.reveal l))) = if Nil? l then begin let g = gget (llist_fragment_tail l phead) in assert (Ghost.reveal g == ptail); elim_llist_fragment_tail_nil l phead; change_equal_slprop (vptr ptail) (vptr phead); let head = gget (vptr phead) in intro_llist_fragment_head_nil l phead head; head end else begin let us = elim_llist_fragment_tail_snoc l phead in let tail = gget (vptr ptail) in assert (ccell_next us.ll_unsnoc_tail == ptail); intro_llist_fragment_head_nil [] (ccell_next us.ll_unsnoc_tail) tail; change_equal_slprop (vptr ptail) (vptr (ccell_next us.ll_unsnoc_tail)); intro_ccell us.ll_unsnoc_tail; let lc = intro_llist_fragment_head_cons us.ll_unsnoc_ptail us.ll_unsnoc_tail tail [] in let head = llist_fragment_tail_to_head us.ll_unsnoc_l phead us.ll_unsnoc_ptail in let g = gget (llist_fragment_head us.ll_unsnoc_l phead head) in let g : Ghost.erased (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = Ghost.hide (Ghost.reveal g) in assert (Ghost.reveal g == (Ghost.reveal us.ll_unsnoc_ptail, Ghost.reveal us.ll_unsnoc_tail)); let l' = llist_fragment_head_append us.ll_unsnoc_l phead head lc us.ll_unsnoc_ptail us.ll_unsnoc_tail in change_equal_slprop (llist_fragment_head l' phead head) (llist_fragment_head l phead head); head end #pop-options val llist_fragment_head_is_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> llist_fragment_head l phead head) (fun h -> ccell_ptrvalue_is_null (snd (sel_llist_fragment_head l phead head h)) == true) (fun h _ h' -> Nil? l == ccell_ptrvalue_is_null head /\ h' (llist_fragment_head l phead head) == h (llist_fragment_head l phead head) ) let llist_fragment_head_is_nil l phead head = if Nil? l then begin elim_llist_fragment_head_nil l phead head; assert (ccell_ptrvalue_is_null head == true); intro_llist_fragment_head_nil l phead head end else begin let r = elim_llist_fragment_head_cons l phead head in let head2 : ccell_lvalue _ = head in change_equal_slprop (llist_fragment_head r.ll_uncons_tl r.ll_uncons_pnext r.ll_uncons_next) (llist_fragment_head r.ll_uncons_tl (ccell_next head2) r.ll_uncons_next); change_equal_slprop (ccell head) (ccell head2); let l' = intro_llist_fragment_head_cons phead head2 r.ll_uncons_next r.ll_uncons_tl in change_equal_slprop (llist_fragment_head l' phead head2) (llist_fragment_head l phead head) end val llist_fragment_head_cons_change_phead (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (phead' : ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> llist_fragment_head l phead' head) (fun _ -> Cons? l) (fun h _ h' -> h' (llist_fragment_head l phead' head) == h (llist_fragment_head l phead head)) let llist_fragment_head_cons_change_phead l phead head phead' = let u = elim_llist_fragment_head_cons l phead head in let head2 : ccell_lvalue _ = head in change_equal_slprop (ccell head) (ccell head2); change_equal_slprop (llist_fragment_head u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head u.ll_uncons_tl (ccell_next head2) u.ll_uncons_next); let l' = intro_llist_fragment_head_cons phead' head2 u.ll_uncons_next u.ll_uncons_tl in change_equal_slprop (llist_fragment_head l' phead' head2) (llist_fragment_head l phead' head) let queue_head_refine (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) (ptl: t_of (llist_fragment_head l (cllist_head x) hd)) (tl: ref (ccell_ptrvalue a)) : Tot prop = let ptl : (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = ptl in tl == fst ptl /\ ccell_ptrvalue_is_null (snd ptl) == true let queue_head_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) (ptl: t_of (llist_fragment_head l (cllist_head x) hd)) : Tot vprop = vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl let queue_head_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) : Tot vprop = llist_fragment_head l (cllist_head x) hd `vdep` queue_head_dep1 x l hd [@@__reduce__] let queue_head (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = vptr (cllist_head x) `vdep` queue_head_dep2 x l val intro_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: Ghost.erased (ccell_ptrvalue a)) : SteelGhost unit opened (vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> queue_head x l) (fun h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) (fun _ _ _ -> True) let intro_queue_head #_ #a x l hd = let ptl = gget (llist_fragment_head l (cllist_head x) hd) in intro_vrefine (vptr (cllist_tail x)) (queue_head_refine x l hd ptl); assert_norm (vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl == queue_head_dep1 x l hd ptl); intro_vdep (llist_fragment_head l (cllist_head x) hd) (vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl) (queue_head_dep1 x l hd); intro_vdep (vptr (cllist_head x)) (llist_fragment_head l (cllist_head x) hd `vdep` queue_head_dep1 x l hd) (queue_head_dep2 x l) val elim_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ccell_ptrvalue a)) opened (queue_head x l) (fun hd -> vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> True) (fun _ hd h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) let elim_queue_head #_ #a x l = let hd = elim_vdep (vptr (cllist_head x)) (queue_head_dep2 x l) in let ptl = elim_vdep (llist_fragment_head l (cllist_head x) hd) (queue_head_dep1 x l hd) in elim_vrefine (vptr (cllist_tail x)) (queue_head_refine x l hd ptl); hd let queue_head_to_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhostT unit opened (queue_head x l) (fun _ -> queue_tail x l) = let hd = elim_queue_head x l in let tl = llist_fragment_head_to_tail l (cllist_head x) hd in intro_queue_tail x l tl let queue_tail_to_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhostT unit opened (queue_tail x l) (fun _ -> queue_head x l) = let tl = elim_queue_tail x l in let hd = llist_fragment_tail_to_head l (cllist_head x) tl in intro_queue_head x l hd (* We choose the head representation, since queue_is_empty and dequeue need the head representation, but only enqueue needs the tail representation. *) [@@__reduce__] let queue x l = queue_head x l let create_queue a = let head = ccell_ptrvalue_null a in let tail : ref (ccell_ptrvalue a) = null in let l0 = alloc_llist head tail in let l = elim_cllist l0 in write (cllist_tail l) (cllist_head l); intro_llist_fragment_head_nil [] (cllist_head l) (Ghost.reveal (Ghost.hide head)); intro_queue_head l [] head; let res : (t a & Ghost.erased (v a)) = (l0, Ghost.hide []) in change_equal_slprop (queue_head l []) (queue (fst res) (snd res)); return res let enqueue #a x l w = queue_head_to_tail x l; let ptail0 = elim_queue_tail x l in let ptail = read (cllist_tail x) in let c = alloc_cell w (ccell_ptrvalue_null a) in let c0 = elim_ccell_ghost c in change_equal_slprop (vptr ptail0) (vptr ptail); write ptail c; change_equal_slprop (vptr ptail) (vptr ptail0); let l' = intro_llist_fragment_tail_snoc l (cllist_head x) ptail0 c0 in write (cllist_tail x) (ccell_next c); intro_queue_tail x l' (ccell_next c0); queue_tail_to_head x l'; return l' let queue_is_empty #a x l = let head0 = elim_queue_head x l in let head = read (cllist_head x) in let res = ccell_ptrvalue_is_null head in llist_fragment_head_is_nil l (cllist_head x) head0; intro_queue_head x l head0; return res
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: CQueue.t a -> l: FStar.Ghost.erased (CQueue.v a) -> Steel.Effect.Steel (a * FStar.Ghost.erased (CQueue.v a))
Steel.Effect.Steel
[]
[]
[ "CQueue.t", "FStar.Ghost.erased", "CQueue.v", "CQueue.Cell.ccell_ptrvalue_is_null", "Steel.Effect.Atomic.return", "FStar.Pervasives.Native.tuple2", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.vdep", "Steel.Reference.vptrp", "CQueue.Cell.ccell_ptrvalue", "CQueue.LList.cllist_head", "Steel.FractionalPermission.full_perm", "CQueue.queue_head_dep2", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.change_equal_slprop", "CQueue.queue_head", "Prims.list", "Prims.Nil", "CQueue.queue", "FStar.Pervasives.Native.snd", "FStar.Pervasives.Native.Mktuple2", "CQueue.intro_queue_head", "CQueue.intro_llist_fragment_head_nil", "FStar.Ghost.reveal", "Steel.Reference.write", "Steel.Reference.ref", "CQueue.LList.cllist_tail", "CQueue.elim_llist_fragment_head_nil", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_tl", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_pnext", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_next", "Prims.bool", "CQueue.llist_fragment_head_cons_change_phead", "Prims._assert", "CQueue.op_Equals_Equals", "Prims.uu___is_Nil", "CQueue.llist_fragment_head_is_nil", "CQueue.Cell.free_cell", "CQueue.Cell.intro_ccell", "Steel.Reference.read", "CQueue.Cell.ccell_next", "CQueue.Cell.ccell_data", "CQueue.Cell.ccell_lvalue", "CQueue.Cell.elim_ccell", "CQueue.Cell.ccell", "CQueue.ll_uncons_t", "CQueue.elim_llist_fragment_head_cons", "CQueue.elim_queue_head" ]
[]
false
true
false
false
false
let dequeue #a x l =
let head0 = elim_queue_head x l in let head = read (cllist_head x) in let u = elim_llist_fragment_head_cons l (cllist_head x) head0 in change_equal_slprop (ccell head0) (ccell head); let head = elim_ccell head in let data = read (ccell_data head) in let next = read (ccell_next head) in intro_ccell head; free_cell head; llist_fragment_head_is_nil u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next; assert (Nil? u.ll_uncons_tl == ccell_ptrvalue_is_null next); write (cllist_head x) next; if ccell_ptrvalue_is_null next then (elim_llist_fragment_head_nil u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next; write (cllist_tail x) (cllist_head x); intro_llist_fragment_head_nil [] (cllist_head x) (Ghost.reveal (Ghost.hide next)); intro_queue_head x [] next; let res = (data, Ghost.hide []) in change_equal_slprop (queue_head x []) (queue x (snd res)); return res) else (llist_fragment_head_cons_change_phead u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next (cllist_head x); intro_queue_head x u.ll_uncons_tl u.ll_uncons_next; let res = (data, u.ll_uncons_tl) in change_equal_slprop (queue_head x u.ll_uncons_tl) (queue x (snd res)); return res)
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.pow2_24
val pow2_24 : Prims.int
let pow2_24 = 16777216
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 53, "start_col": 7, "start_line": 53 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let pow2_24 =
16777216
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.two_to_seq_to_two_LE
val two_to_seq_to_two_LE (#a:Type) (x:seq2 a) : Lemma (two_to_seq_LE (seq_to_two_LE x) == x) [SMTPat (two_to_seq_LE (seq_to_two_LE x))]
val two_to_seq_to_two_LE (#a:Type) (x:seq2 a) : Lemma (two_to_seq_LE (seq_to_two_LE x) == x) [SMTPat (two_to_seq_LE (seq_to_two_LE x))]
let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 13, "start_col": 0, "start_line": 12 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words.Seq_s.seq2 a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.two_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_two_LE x) == x) [SMTPat (Vale.Def.Words.Seq_s.two_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_two_LE x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words.Seq_s.seq2", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.two_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_two_LE", "Prims.unit" ]
[]
true
false
true
false
false
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE
val seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
val seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 35, "start_col": 0, "start_line": 28 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_to_seq_four_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_to_seq_four_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "FStar.Pervasives.reveal_opaque", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let seq_to_seq_four_to_seq_BE (#a: Type) (x: seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] =
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_four_to_seq_to_seq_four_LE
val seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) [SMTPat (seq_four_to_seq_LE (seq_to_seq_four_LE x))]
val seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) [SMTPat (seq_four_to_seq_LE (seq_to_seq_four_LE x))]
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 43, "start_col": 0, "start_line": 37 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_seq_four_LE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_four_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_seq_four_LE x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words_s.four", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_four_to_seq_to_seq_four_LE (#a: Type) (x: seq a {length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) =
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.base_to_nat
val base_to_nat (base: pos) (cs: list (natN base)) : nat
val base_to_nat (base: pos) (cs: list (natN base)) : nat
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 89, "start_col": 0, "start_line": 86 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3", "smt.arith.nl=true" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
base: Prims.pos -> cs: Prims.list (Vale.Def.Words_s.natN base) -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.list", "Vale.Def.Words_s.natN", "Prims.op_Addition", "FStar.Mul.op_Star", "Vale.Def.Words.Seq.base_to_nat", "Prims.nat" ]
[ "recursion" ]
false
false
false
false
false
let rec base_to_nat (base: pos) (cs: list (natN base)) : nat =
match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_four_to_seq_to_seq_four_BE
val seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) [SMTPat (seq_four_to_seq_BE (seq_to_seq_four_BE x))]
val seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) [SMTPat (seq_four_to_seq_BE (seq_to_seq_four_BE x))]
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 51, "start_col": 0, "start_line": 45 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_BE (Vale.Def.Words.Seq_s.seq_to_seq_four_BE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (Vale.Def.Words.Seq_s.seq_to_seq_four_BE x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words_s.four", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_four_to_seq_to_seq_four_BE (#a: Type) (x: seq a {length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) =
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE
val seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
val seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 26, "start_col": 0, "start_line": 17 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_to_seq_four_LE (Vale.Def.Words.Seq_s.seq_four_to_seq_LE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_to_seq_four_LE (Vale.Def.Words.Seq_s.seq_four_to_seq_LE x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Division", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Prims.op_Multiply", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "FStar.Pervasives.reveal_opaque", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let seq_to_seq_four_to_seq_LE (#a: Type) (x: seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] =
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.four_to_nat_to_four_8
val four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))]
val four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))]
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 81, "start_col": 0, "start_line": 62 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 32) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.nat_to_four 8 x) == x) [SMTPat (Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.nat_to_four 8 x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_norm", "Prims.pow2", "Prims.unit", "Vale.Def.Words.Seq.lemma_fundamental_div_mod_4", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.nat", "Prims.l_or", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.int", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words_s.int_to_natN", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words_s.Mkfour", "Prims.op_Modulus", "Prims.op_Division", "Prims.pos", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let four_to_nat_to_four_8 (x: natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] =
let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.four_to_seq_to_four_LE
val four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
val four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 177, "start_col": 0, "start_line": 173 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words.Seq_s.seq4 a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_four_LE x) == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words.Seq_s.seq4", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_four_LE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let four_to_seq_to_four_LE (#a: Type) (x: seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) =
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.nat_to_four_to_nat
val nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))]
val nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))]
let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 171, "start_col": 0, "start_line": 166 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 8)) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Four_s.nat_to_four 8 (Vale.Def.Words.Four_s.four_to_nat 8 x) == x) [SMTPat (Vale.Def.Words.Four_s.nat_to_four 8 (Vale.Def.Words.Four_s.four_to_nat 8 x))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Vale.Def.Words.Seq.four_to_nat_inj", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Prims.unit", "Vale.Def.Words.Seq.four_to_nat_to_four_8", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.pow2", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let nat_to_four_to_nat (x: four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] =
four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.four_to_seq_to_four_BE
val four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
val four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 188, "start_col": 0, "start_line": 184 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words.Seq_s.seq4 a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_BE (Vale.Def.Words.Seq_s.seq_to_four_BE x) == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words.Seq_s.seq4", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_four_BE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let four_to_seq_to_four_BE (#a: Type) (x: seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) =
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.four_to_seq_LE_is_seq_four_to_seq_LE
val four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
val four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 202, "start_col": 0, "start_line": 195 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_LE x == Vale.Def.Words.Seq_s.seq_four_to_seq_LE (FStar.Seq.Base.create 1 x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words_s.four", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "FStar.Seq.Base.create", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Words.Seq_s.four_to_seq_LE", "FStar.Pervasives.reveal_opaque", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.nat", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let four_to_seq_LE_is_seq_four_to_seq_LE (#a: Type) (x: four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) =
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_nat8_to_seq_nat32_to_seq_nat8_BE
val seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) [SMTPat (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x))]
val seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) [SMTPat (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x))]
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 223, "start_col": 0, "start_line": 219 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE x)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x: seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) =
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.four_to_nat_inj
val four_to_nat_inj (x y: four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y)
val four_to_nat_inj (x y: four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y)
let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 163, "start_col": 0, "start_line": 154 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4"
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 4, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN 256) -> y: Vale.Def.Words_s.four (Vale.Def.Words_s.natN 256) -> FStar.Pervasives.Lemma (requires Vale.Def.Words.Four_s.four_to_nat 8 x == Vale.Def.Words.Four_s.four_to_nat 8 y) (ensures x == y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.unit", "Vale.Def.Words.Seq.base_to_nat_inj", "Prims.Cons", "Prims.Nil", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.nat", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words_s.Mkfour", "Prims.pow2", "Vale.Def.Words.Seq.base_to_nat", "FStar.Mul.op_Star", "Prims.squash", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let four_to_nat_inj (x y: four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) =
let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_nat8_to_seq_uint8_to_seq_nat8
val seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) : Lemma (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x) == x) [SMTPat (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x))]
val seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) : Lemma (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x) == x) [SMTPat (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x))]
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 234, "start_col": 0, "start_line": 233 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 x)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8", "Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8", "Prims.unit" ]
[]
true
false
true
false
false
let seq_nat8_to_seq_uint8_to_seq_nat8 (x: seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.four_to_seq_BE_is_seq_four_to_seq_BE
val four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
val four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 211, "start_col": 0, "start_line": 204 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_BE x == Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.create 1 x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "FStar.Seq.Base.create", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Words.Seq_s.four_to_seq_BE", "FStar.Pervasives.reveal_opaque", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.nat", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let four_to_seq_BE_is_seq_four_to_seq_BE (x: four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) =
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); ()
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_nat8_to_seq_uint8_injective
val seq_nat8_to_seq_uint8_injective (b b':seq nat8) : Lemma (requires equal (seq_nat8_to_seq_uint8 b) (seq_nat8_to_seq_uint8 b')) (ensures b == b')
val seq_nat8_to_seq_uint8_injective (b b':seq nat8) : Lemma (requires equal (seq_nat8_to_seq_uint8 b) (seq_nat8_to_seq_uint8 b')) (ensures b == b')
let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b'
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 240, "start_col": 0, "start_line": 239 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> b': FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 b) (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 b')) (ensures b == b')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.Lib.Seqs.seq_map_injective", "FStar.UInt8.t", "FStar.UInt8.uint_to_t", "Prims.unit" ]
[]
true
false
true
false
false
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
false
Vale.Def.Words.Seq.fst
Vale.Def.Words.Seq.seq_nat8_to_seq_nat32_to_seq_nat8_LE
val seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) [SMTPat (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x))]
val seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) [SMTPat (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x))]
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); ()
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 217, "start_col": 0, "start_line": 213 }
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #pop-options let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true" (* Localized use of NL arith. The makefile passes the option to disable it in this file, so we reenable it here. *) let rec base_to_nat (base:pos) (cs : list (natN base)) : nat = match cs with | [] -> 0 | c :: cs' -> c + base_to_nat base cs' * base (* NB: right-multiplying by base is a lot better than left-multiplying since it more closely matches the lemmas in FStar.Math.Lemmas. *) #pop-options (* If two lists represent the same number, their heads must match, otherwise their modulus wrt the base would differ. *) let base_to_nat_inj_head (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y) (ensures List.Tot.hd x == List.Tot.hd y) = match x, y with | x1 :: xs, y1 :: ys -> let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { x1 <: int; == { small_mod x1 base } x1 % base; == { lemma_mod_plus x1 (base_to_nat base xs) base } (x1 + base_to_nat base xs * base) % base; == {} x' % base; == {} y' % base; == {} (y1 + base_to_nat base ys * base) % base; == { lemma_mod_plus y1 (base_to_nat base ys) base } y1 % base; == { small_mod y1 base } y1; } (* Generalizing the lemma above, if two lists represent the same number, and they have the same length, they must be the same list. The length requirement is due to the possibility of trailing zeroes. Another possibility is stating that one of them is a prefix of the other, which is enough for this module, even without stating that the "rest" is all zeroes. *) let rec base_to_nat_inj (base:pos) (x y : list (natN base)) : Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y) (ensures x == y) = match x, y with | [], [] -> () | x1 :: xs, y1 :: ys -> base_to_nat_inj_head base x y; let x' = base_to_nat base x in let y' = base_to_nat base y in let open FStar.Math.Lemmas in calc (==) { base_to_nat base xs * base; == {} x' - x1; == {} y' - y1; == {} base_to_nat base ys * base; }; lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base; assert (base_to_nat base xs == base_to_nat base ys); base_to_nat_inj base xs ys #push-options "--fuel 4" (* Fuel needed to prove length equality *) let four_to_nat_inj (x y : four (natN 256)) : Lemma (requires four_to_nat 8 x == four_to_nat 8 y) (ensures x == y) = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]); assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]); base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3]; () #pop-options let nat_to_four_to_nat (x:four (natN 256)) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = four_to_nat_to_four_8 (four_to_nat 8 x); four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE x)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x: seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) =
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); ()
false