effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_comm = assert (forall x y. x +. y = y +.x) | let add_comm = | false | null | false | assert (forall x y. x +. y = y +. x) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R)
let mul_id_l = assert (forall n. 1.0R *. n = n)
let mul_id_r = assert (forall n. n *. 1.0R = n) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_comm : Prims.unit | [] | FStar.Real.add_comm | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 50,
"end_line": 102,
"start_col": 15,
"start_line": 102
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R) | let test_mul_lt = | false | null | false | assert (2.0R *. 2.0R <. 5.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Less_Dot",
"FStar.Real.op_Star_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_mul_lt : Prims.unit | [] | FStar.Real.test_mul_lt | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 83,
"start_col": 18,
"start_line": 83
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_div_lt = assert (8.0R /. 2.0R <. 5.0R) | let test_div_lt = | false | null | false | assert (8.0R /. 2.0R <. 5.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Less_Dot",
"FStar.Real.op_Slash_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_div_lt : Prims.unit | [] | FStar.Real.test_div_lt | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 86,
"start_col": 18,
"start_line": 86
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_lt1 = assert (1.0R <. 2.0R) | let test_lt1 = | false | null | false | assert (1.0R <. 2.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Less_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_lt1 : Prims.unit | [] | FStar.Real.test_lt1 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 36,
"end_line": 62,
"start_col": 15,
"start_line": 62
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_comm = assert (forall x y. x *. y = y *.x) | let mul_comm = | false | null | false | assert (forall x y. x *. y = y *. x) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Star_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R)
let mul_id_l = assert (forall n. 1.0R *. n = n)
let mul_id_r = assert (forall n. n *. 1.0R = n)
let add_comm = assert (forall x y. x +. y = y +.x)
let add_assoc = assert (forall x y z. ((x +. y) +.z) = (x +. (y +. z))) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_comm : Prims.unit | [] | FStar.Real.mul_comm | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 50,
"end_line": 105,
"start_col": 15,
"start_line": 105
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R) | let mul_nil_l = | false | null | false | assert (forall n. 0.0R *. n = 0.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Star_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_nil_l : Prims.unit | [] | FStar.Real.mul_nil_l | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 51,
"end_line": 96,
"start_col": 16,
"start_line": 96
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_gt1 = assert (~ (1.0R >. 2.0R)) | let test_gt1 = | false | null | false | assert (~(1.0R >. 2.0R)) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_not",
"Prims.b2t",
"FStar.Real.op_Greater_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R)) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_gt1 : Prims.unit | [] | FStar.Real.test_gt1 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 40,
"end_line": 70,
"start_col": 15,
"start_line": 70
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_add_eq = assert (1.0R +. 1.0R = 2.0R) | let test_add_eq = | false | null | false | assert (1.0R +. 1.0R = 2.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.real",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_add_eq : Prims.unit | [] | FStar.Real.test_add_eq | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 46,
"end_line": 78,
"start_col": 18,
"start_line": 78
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_ge1 = assert (~ (1.0R >=. 2.0R)) | let test_ge1 = | false | null | false | assert (~(1.0R >=. 2.0R)) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_not",
"Prims.b2t",
"FStar.Real.op_Greater_Equals_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_ge1 : Prims.unit | [] | FStar.Real.test_ge1 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 41,
"end_line": 74,
"start_col": 15,
"start_line": 74
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_lt3 = assert (~ (2.0R <. 1.0R)) | let test_lt3 = | false | null | false | assert (~(2.0R <. 1.0R)) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_not",
"Prims.b2t",
"FStar.Real.op_Less_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_lt3 : Prims.unit | [] | FStar.Real.test_lt3 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 40,
"end_line": 64,
"start_col": 15,
"start_line": 64
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_dist = assert (forall x y z. x *. (y +. z) = (x *. y) +. (x *.z)) | let mul_dist = | false | null | false | assert (forall x y z. x *. (y +. z) = (x *. y) +. (x *. z)) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Star_Dot",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R)
let mul_id_l = assert (forall n. 1.0R *. n = n)
let mul_id_r = assert (forall n. n *. 1.0R = n)
let add_comm = assert (forall x y. x +. y = y +.x)
let add_assoc = assert (forall x y z. ((x +. y) +.z) = (x +. (y +. z)))
let mul_comm = assert (forall x y. x *. y = y *.x) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_dist : Prims.unit | [] | FStar.Real.mul_dist | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 73,
"end_line": 107,
"start_col": 15,
"start_line": 107
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_le1 = assert (1.0R <=. 2.0R) | let test_le1 = | false | null | false | assert (1.0R <=. 2.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Less_Equals_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R)) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_le1 : Prims.unit | [] | FStar.Real.test_le1 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 37,
"end_line": 66,
"start_col": 15,
"start_line": 66
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_assoc = assert (forall x y z. ((x +. y) +.z) = (x +. (y +. z))) | let add_assoc = | false | null | false | assert (forall x y z. ((x +. y) +. z) = (x +. (y +. z))) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R)
let mul_id_l = assert (forall n. 1.0R *. n = n)
let mul_id_r = assert (forall n. n *. 1.0R = n) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_assoc : Prims.unit | [] | FStar.Real.add_assoc | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 71,
"end_line": 103,
"start_col": 16,
"start_line": 103
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_ge3 = assert (2.0R >=. 1.0R) | let test_ge3 = | false | null | false | assert (2.0R >=. 1.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Greater_Equals_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R)) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_ge3 : Prims.unit | [] | FStar.Real.test_ge3 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 37,
"end_line": 76,
"start_col": 15,
"start_line": 76
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_lt2 = assert (~ (1.0R <. 1.0R)) | let test_lt2 = | false | null | false | assert (~(1.0R <. 1.0R)) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_not",
"Prims.b2t",
"FStar.Real.op_Less_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_lt2 : Prims.unit | [] | FStar.Real.test_lt2 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 40,
"end_line": 63,
"start_col": 15,
"start_line": 63
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_add_lt = assert (1.0R +. 1.0R <. 3.0R) | let test_add_lt = | false | null | false | assert (1.0R +. 1.0R <. 3.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Less_Dot",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_add_lt : Prims.unit | [] | FStar.Real.test_add_lt | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 80,
"start_col": 18,
"start_line": 80
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_id_l = assert (forall n. 0.0R +. n = n) | let add_id_l = | false | null | false | assert (forall n. 0.0R +. n = n) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_id_l : Prims.unit | [] | FStar.Real.add_id_l | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 93,
"start_col": 15,
"start_line": 93
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_id_r = assert (forall n. n +. 0.0R = n) | let add_id_r = | false | null | false | assert (forall n. n +. 0.0R = n) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Plus_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_id_r : Prims.unit | [] | FStar.Real.add_id_r | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 94,
"start_col": 15,
"start_line": 94
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test = assert (two >. one) | let test = | false | null | false | assert (two >. one) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Greater_Dot",
"FStar.Real.two",
"FStar.Real.one"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test : Prims.unit | [] | FStar.Real.test | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 30,
"end_line": 59,
"start_col": 11,
"start_line": 59
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_ge2 = assert (1.0R >=. 1.0R) | let test_ge2 = | false | null | false | assert (1.0R >=. 1.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Greater_Equals_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_ge2 : Prims.unit | [] | FStar.Real.test_ge2 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 37,
"end_line": 75,
"start_col": 15,
"start_line": 75
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_gt3 = assert (2.0R >. 1.0R) | let test_gt3 = | false | null | false | assert (2.0R >. 1.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Greater_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R)) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_gt3 : Prims.unit | [] | FStar.Real.test_gt3 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 36,
"end_line": 72,
"start_col": 15,
"start_line": 72
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_div_eq = assert (8.0R /. 2.0R = 4.0R) | let test_div_eq = | false | null | false | assert (8.0R /. 2.0R = 4.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.real",
"FStar.Real.op_Slash_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_div_eq : Prims.unit | [] | FStar.Real.test_div_eq | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 46,
"end_line": 85,
"start_col": 18,
"start_line": 85
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R) | let test_sqrt_2_mul = | false | null | false | assert (sqrt_2 *. sqrt_2 = 2.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.real",
"FStar.Real.op_Star_Dot",
"FStar.Real.sqrt_2"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_sqrt_2_mul : Prims.unit | [] | FStar.Real.test_sqrt_2_mul | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 54,
"end_line": 88,
"start_col": 22,
"start_line": 88
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_assoc = assert (forall x y z. ((x *. y) *.z) = (x *. (y *. z))) | let mul_assoc = | false | null | false | assert (forall x y z. ((x *. y) *. z) = (x *. (y *. z))) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Star_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R)
let mul_id_l = assert (forall n. 1.0R *. n = n)
let mul_id_r = assert (forall n. n *. 1.0R = n)
let add_comm = assert (forall x y. x +. y = y +.x)
let add_assoc = assert (forall x y z. ((x +. y) +.z) = (x +. (y +. z))) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_assoc : Prims.unit | [] | FStar.Real.mul_assoc | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 71,
"end_line": 106,
"start_col": 16,
"start_line": 106
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_id_l = assert (forall n. 1.0R *. n = n) | let mul_id_l = | false | null | false | assert (forall n. 1.0R *. n = n) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Star_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_id_l : Prims.unit | [] | FStar.Real.mul_id_l | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 99,
"start_col": 15,
"start_line": 99
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_le2 = assert (1.0R <=. 1.0R) | let test_le2 = | false | null | false | assert (1.0R <=. 1.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"FStar.Real.op_Less_Equals_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R)) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_le2 : Prims.unit | [] | FStar.Real.test_le2 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 37,
"end_line": 67,
"start_col": 15,
"start_line": 67
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n) | let n_over_n2 (n: real{n <> 0.0R /\ n *. n <> 0.0R}) = | false | null | false | assert (n /. (n *. n) == 1.0R /. n) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"FStar.Real.real",
"Prims.l_and",
"Prims.b2t",
"Prims.op_disEquality",
"FStar.Real.op_Star_Dot",
"Prims._assert",
"Prims.eq2",
"FStar.Real.op_Slash_Dot",
"Prims.unit"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two} | false | false | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val n_over_n2 : n: FStar.Real.real{n <> 0.0R /\ n *. n <> 0.0R} -> Prims.unit | [] | FStar.Real.n_over_n2 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | n: FStar.Real.real{n <> 0.0R /\ n *. n <> 0.0R} -> Prims.unit | {
"end_col": 87,
"end_line": 57,
"start_col": 52,
"start_line": 57
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_id_r = assert (forall n. n *. 1.0R = n) | let mul_id_r = | false | null | false | assert (forall n. n *. 1.0R = n) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.l_Forall",
"FStar.Real.real",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.op_Star_Dot"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n)
let test = assert (two >. one)
let test1 = assert (one = 1.0R)
let test_lt1 = assert (1.0R <. 2.0R)
let test_lt2 = assert (~ (1.0R <. 1.0R))
let test_lt3 = assert (~ (2.0R <. 1.0R))
let test_le1 = assert (1.0R <=. 2.0R)
let test_le2 = assert (1.0R <=. 1.0R)
let test_le3 = assert (~ (2.0R <=. 1.0R))
let test_gt1 = assert (~ (1.0R >. 2.0R))
let test_gt2 = assert (~ (1.0R >. 1.0R))
let test_gt3 = assert (2.0R >. 1.0R)
let test_ge1 = assert (~ (1.0R >=. 2.0R))
let test_ge2 = assert (1.0R >=. 1.0R)
let test_ge3 = assert (2.0R >=. 1.0R)
let test_add_eq = assert (1.0R +. 1.0R = 2.0R)
let test_add_eq' = assert (1.0R +. 3.0R = 4.0R)
let test_add_lt = assert (1.0R +. 1.0R <. 3.0R)
let test_mul_eq = assert (2.0R *. 2.0R = 4.0R)
let test_mul_lt = assert (2.0R *. 2.0R <. 5.0R)
let test_div_eq = assert (8.0R /. 2.0R = 4.0R)
let test_div_lt = assert (8.0R /. 2.0R <. 5.0R)
let test_sqrt_2_mul = assert (sqrt_2 *. sqrt_2 = 2.0R)
//let test_sqrt_2_add = assert (sqrt_2 +. sqrt_2 >. 2.0R) // Fails
let test_sqrt_2_scale = assert (1.0R /. sqrt_2 = sqrt_2 /. 2.0R)
// Common identities
let add_id_l = assert (forall n. 0.0R +. n = n)
let add_id_r = assert (forall n. n +. 0.0R = n)
let mul_nil_l = assert (forall n. 0.0R *. n = 0.0R)
let mul_nil_r = assert (forall n. n *. 0.0R = 0.0R) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_id_r : Prims.unit | [] | FStar.Real.mul_id_r | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 47,
"end_line": 100,
"start_col": 15,
"start_line": 100
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test1 = assert (one = 1.0R) | let test1 = | false | null | false | assert (one = 1.0R) | {
"checked_file": "FStar.Real.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Real.fsti"
} | [
"total"
] | [
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Real.real",
"FStar.Real.one"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Real
(*
This module provides a signature for real arithmetic.
Real number constants can be specific in floating point format with
an 'R' suffix, e.g., 1.0R
All these operations are mapped to the corresponding primitives
in Z3's theory of real arithmetic.
*)
val real : eqtype
val of_int : int -> Tot real
(**
Used to extract real constants; this function is
uninterpreted logically. i.e., 1.1R is extracted to
[of_string "1.1"]
*)
val of_string: string -> Tot real
val ( +. ) : real -> real -> Tot real
val ( -. ) : real -> real -> Tot real
val ( *. ) : real -> real -> Tot real
val ( /. ) : real -> d:real{d <> 0.0R} -> Tot real
val ( >. ) : real -> real -> Tot bool
val ( >=. ) : real -> real -> Tot bool
val ( <. ) : real -> real -> Tot bool
val ( <=. ) : real -> real -> Tot bool
#reset-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native"
//Tests
let zero : real = of_int 0
let one : real = of_int 1
let two : real = of_int 2
val sqrt_2 : r:real{r *. r = two}
let n_over_n2 (n:real{n <> 0.0R /\ n*.n <> 0.0R}) = assert (n /. (n *. n) == 1.0R /. n) | false | true | FStar.Real.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test1 : Prims.unit | [] | FStar.Real.test1 | {
"file_name": "ulib/FStar.Real.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.unit | {
"end_col": 31,
"end_line": 60,
"start_col": 12,
"start_line": 60
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let montgomery_ladder1_1 (nq:proj_point) =
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq | let montgomery_ladder1_1 (nq: proj_point) = | false | null | false | let nq = double nq in
let nq = double nq in
let nq = double nq in
nq | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"Spec.Curve25519.proj_point",
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"Spec.Curve25519.double"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519
let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3)
let add_and_double1_1 a b nqp1 =
let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3)
let add_and_double1 q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let nqp1 = add_and_double1_0 a b nqp1 in
let (x_2, z_2), (x_3, z_3) = add_and_double1_1 a b nqp1 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
val lemma_add_and_double: q:proj_point -> nq:proj_point -> nqp1:proj_point ->
Lemma (add_and_double1 q nq nqp1 == add_and_double q nq nqp1)
let lemma_add_and_double q nq nqp1 = ()
let montgomery_ladder1_0 (k:scalar) (q:proj_point) (nq:proj_point) (nqp1:proj_point) =
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
nq | false | true | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val montgomery_ladder1_1 : nq: Spec.Curve25519.proj_point -> Spec.Curve25519.elem * Spec.Curve25519.elem | [] | Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1_1 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | nq: Spec.Curve25519.proj_point -> Spec.Curve25519.elem * Spec.Curve25519.elem | {
"end_col": 4,
"end_line": 61,
"start_col": 42,
"start_line": 57
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let montgomery_ladder1_2 (init:elem) =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
q, nq, nqp1 | let montgomery_ladder1_2 (init: elem) = | false | null | false | let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
q, nq, nqp1 | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.one",
"Spec.Curve25519.zero",
"FStar.Pervasives.Native.tuple3"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519
let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3)
let add_and_double1_1 a b nqp1 =
let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3)
let add_and_double1 q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let nqp1 = add_and_double1_0 a b nqp1 in
let (x_2, z_2), (x_3, z_3) = add_and_double1_1 a b nqp1 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
val lemma_add_and_double: q:proj_point -> nq:proj_point -> nqp1:proj_point ->
Lemma (add_and_double1 q nq nqp1 == add_and_double q nq nqp1)
let lemma_add_and_double q nq nqp1 = ()
let montgomery_ladder1_0 (k:scalar) (q:proj_point) (nq:proj_point) (nqp1:proj_point) =
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
nq
let montgomery_ladder1_1 (nq:proj_point) =
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq | false | true | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val montgomery_ladder1_2 : init: Spec.Curve25519.elem
-> ((Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem)) *
(Spec.Curve25519.elem * Spec.Curve25519.elem) | [] | Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1_2 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | init: Spec.Curve25519.elem
-> ((Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem)) *
(Spec.Curve25519.elem * Spec.Curve25519.elem) | {
"end_col": 13,
"end_line": 67,
"start_col": 38,
"start_line": 63
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3) | let add_and_double1_0 a b nqp1 = | false | null | false | let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3) | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.op_Subtraction_Percent",
"Spec.Curve25519.op_Plus_Percent",
"Spec.Curve25519.op_Star_Percent"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519 | false | true | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_and_double1_0 : a: Spec.Curve25519.elem ->
b: Spec.Curve25519.elem ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> Spec.Curve25519.elem * Spec.Curve25519.elem | [] | Hacl.Spec.Curve25519.AddAndDouble.add_and_double1_0 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Curve25519.elem ->
b: Spec.Curve25519.elem ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> Spec.Curve25519.elem * Spec.Curve25519.elem | {
"end_col": 12,
"end_line": 16,
"start_col": 32,
"start_line": 7
} |
|
Prims.Tot | val montgomery_ladder1 (init: elem) (k: scalar) : Tot proj_point | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let montgomery_ladder1 (init:elem) (k:scalar) : Tot proj_point =
let q, nq, nqp1 = montgomery_ladder1_2 init in
let nq = montgomery_ladder1_0 k q nq nqp1 in
montgomery_ladder1_1 nq | val montgomery_ladder1 (init: elem) (k: scalar) : Tot proj_point
let montgomery_ladder1 (init: elem) (k: scalar) : Tot proj_point = | false | null | false | let q, nq, nqp1 = montgomery_ladder1_2 init in
let nq = montgomery_ladder1_0 k q nq nqp1 in
montgomery_ladder1_1 nq | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Spec.Curve25519.scalar",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1_1",
"Spec.Curve25519.proj_point",
"Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1_0",
"FStar.Pervasives.Native.tuple3",
"Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1_2"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519
let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3)
let add_and_double1_1 a b nqp1 =
let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3)
let add_and_double1 q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let nqp1 = add_and_double1_0 a b nqp1 in
let (x_2, z_2), (x_3, z_3) = add_and_double1_1 a b nqp1 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
val lemma_add_and_double: q:proj_point -> nq:proj_point -> nqp1:proj_point ->
Lemma (add_and_double1 q nq nqp1 == add_and_double q nq nqp1)
let lemma_add_and_double q nq nqp1 = ()
let montgomery_ladder1_0 (k:scalar) (q:proj_point) (nq:proj_point) (nqp1:proj_point) =
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
nq
let montgomery_ladder1_1 (nq:proj_point) =
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq
let montgomery_ladder1_2 (init:elem) =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
q, nq, nqp1 | false | true | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val montgomery_ladder1 (init: elem) (k: scalar) : Tot proj_point | [] | Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | init: Spec.Curve25519.elem -> k: Spec.Curve25519.scalar -> Spec.Curve25519.proj_point | {
"end_col": 25,
"end_line": 72,
"start_col": 64,
"start_line": 69
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_and_double1 q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let nqp1 = add_and_double1_0 a b nqp1 in
let (x_2, z_2), (x_3, z_3) = add_and_double1_1 a b nqp1 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3) | let add_and_double1 q nq nqp1 = | false | null | false | let x_1, z_1 = q in
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let nqp1 = add_and_double1_0 a b nqp1 in
let (x_2, z_2), (x_3, z_3) = add_and_double1_1 a b nqp1 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3) | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.op_Star_Percent",
"Hacl.Spec.Curve25519.AddAndDouble.add_and_double1_1",
"Hacl.Spec.Curve25519.AddAndDouble.add_and_double1_0",
"Spec.Curve25519.op_Subtraction_Percent",
"Spec.Curve25519.op_Plus_Percent"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519
let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3)
let add_and_double1_1 a b nqp1 =
let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3) | false | false | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_and_double1 : q: (Spec.Curve25519.elem * _) ->
nq: (Spec.Curve25519.elem * Spec.Curve25519.elem) ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> (Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem) | [] | Hacl.Spec.Curve25519.AddAndDouble.add_and_double1 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
q: (Spec.Curve25519.elem * _) ->
nq: (Spec.Curve25519.elem * Spec.Curve25519.elem) ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> (Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem) | {
"end_col": 24,
"end_line": 41,
"start_col": 31,
"start_line": 33
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_and_double1_1 a b nqp1 =
let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3) | let add_and_double1_1 a b nqp1 = | false | null | false | let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3) | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.op_Star_Percent",
"Spec.Curve25519.op_Plus_Percent",
"Spec.Curve25519.op_Subtraction_Percent"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519
let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3) | false | true | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_and_double1_1 : a: Spec.Curve25519.elem ->
b: Spec.Curve25519.elem ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> (Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem) | [] | Hacl.Spec.Curve25519.AddAndDouble.add_and_double1_1 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Curve25519.elem ->
b: Spec.Curve25519.elem ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> (Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem) | {
"end_col": 24,
"end_line": 31,
"start_col": 32,
"start_line": 18
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let montgomery_ladder1_0 (k:scalar) (q:proj_point) (nq:proj_point) (nqp1:proj_point) =
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
nq | let montgomery_ladder1_0 (k: scalar) (q nq nqp1: proj_point) = | false | null | false | let nq, nqp1 = cswap2 (u64 1) nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
let nq, nqp1, swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq, nqp1 = cswap2 swap nq nqp1 in
nq | {
"checked_file": "Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.AddAndDouble.fst"
} | [
"total"
] | [
"Spec.Curve25519.scalar",
"Spec.Curve25519.proj_point",
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"Lib.IntTypes.uint64",
"Spec.Curve25519.cswap2",
"FStar.Pervasives.Native.tuple3",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.LoopCombinators.repeati",
"Spec.Curve25519.ladder_step",
"FStar.Pervasives.Native.Mktuple3",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.u64",
"Spec.Curve25519.add_and_double"
] | [] | module Hacl.Spec.Curve25519.AddAndDouble
open FStar.Mul
open Lib.IntTypes
open Spec.Curve25519
let add_and_double1_0 a b nqp1 =
let x_3, z_3 = nqp1 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
(x_3, z_3)
let add_and_double1_1 a b nqp1 =
let x_3, z_3 = nqp1 in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
(x_2, z_2), (x_3, z_3)
let add_and_double1 q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let nqp1 = add_and_double1_0 a b nqp1 in
let (x_2, z_2), (x_3, z_3) = add_and_double1_1 a b nqp1 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
val lemma_add_and_double: q:proj_point -> nq:proj_point -> nqp1:proj_point ->
Lemma (add_and_double1 q nq nqp1 == add_and_double q nq nqp1)
let lemma_add_and_double q nq nqp1 = () | false | true | Hacl.Spec.Curve25519.AddAndDouble.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val montgomery_ladder1_0 : k: Spec.Curve25519.scalar ->
q: Spec.Curve25519.proj_point ->
nq: Spec.Curve25519.proj_point ->
nqp1: Spec.Curve25519.proj_point
-> Spec.Curve25519.proj_point | [] | Hacl.Spec.Curve25519.AddAndDouble.montgomery_ladder1_0 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.AddAndDouble.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Spec.Curve25519.scalar ->
q: Spec.Curve25519.proj_point ->
nq: Spec.Curve25519.proj_point ->
nqp1: Spec.Curve25519.proj_point
-> Spec.Curve25519.proj_point | {
"end_col": 4,
"end_line": 55,
"start_col": 86,
"start_line": 48
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_c = p:aff_point{is_on_curve p} | let aff_point_c = | false | null | false | p: aff_point{is_on_curve p} | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Spec.Ed25519.PointOps.aff_point",
"Spec.Ed25519.PointOps.is_on_curve"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_c : Type0 | [] | Spec.Ed25519.aff_point_c | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 44,
"end_line": 34,
"start_col": 18,
"start_line": 34
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ext_point_c = p:ext_point{point_inv p} | let ext_point_c = | false | null | false | p: ext_point{point_inv p} | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Spec.Ed25519.PointOps.ext_point",
"Spec.Ed25519.PointOps.point_inv"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
} | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ext_point_c : Type0 | [] | Spec.Ed25519.ext_point_c | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 42,
"end_line": 47,
"start_col": 18,
"start_line": 47
} |
|
Prims.Tot | val size_signature:size_nat | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size_signature: size_nat = 64 | val size_signature:size_nat
let size_signature:size_nat = | false | null | false | 64 | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100" | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size_signature:size_nat | [] | Spec.Ed25519.size_signature | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.nat{n <= Prims.pow2 32 - 1} | {
"end_col": 33,
"end_line": 19,
"start_col": 31,
"start_line": 19
} |
Prims.Tot | val aff_point_add_c (p q: aff_point_c) : aff_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q | val aff_point_add_c (p q: aff_point_c) : aff_point_c
let aff_point_add_c (p q: aff_point_c) : aff_point_c = | false | null | false | EL.aff_point_add_lemma p q;
aff_point_add p q | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Spec.Ed25519.aff_point_c",
"Spec.Ed25519.PointOps.aff_point_add",
"Prims.unit",
"Spec.Ed25519.Lemmas.aff_point_add_lemma"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p} | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_add_c (p q: aff_point_c) : aff_point_c | [] | Spec.Ed25519.aff_point_add_c | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.Ed25519.aff_point_c -> q: Spec.Ed25519.aff_point_c -> Spec.Ed25519.aff_point_c | {
"end_col": 19,
"end_line": 37,
"start_col": 2,
"start_line": 36
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512) | let max_input_length_sha512 = | false | null | false | Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512) | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.__proj__Some__item__v",
"Prims.pos",
"Spec.Hash.Definitions.max_input_length",
"Spec.Hash.Definitions.SHA2_512"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_input_length_sha512 : Prims.pos | [] | Spec.Ed25519.max_input_length_sha512 | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 109,
"end_line": 25,
"start_col": 30,
"start_line": 25
} |
|
Prims.Tot | val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q | val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q = | false | null | false | EL.to_aff_point_add_lemma p q;
point_add p q | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.PointOps.point_add",
"Prims.unit",
"Spec.Ed25519.Lemmas.to_aff_point_add_lemma"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid | [] | Spec.Ed25519.point_add_c | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.mul_st Spec.Ed25519.ext_point_c Spec.Ed25519.mk_to_ed25519_comm_monoid | {
"end_col": 15,
"end_line": 62,
"start_col": 2,
"start_line": 61
} |
Prims.Tot | val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p | val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p = | false | null | false | EL.to_aff_point_double_lemma p;
point_double p | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.PointOps.point_double",
"Prims.unit",
"Spec.Ed25519.Lemmas.to_aff_point_double_lemma"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid | [] | Spec.Ed25519.point_double_c | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.sqr_st Spec.Ed25519.ext_point_c Spec.Ed25519.mk_to_ed25519_comm_monoid | {
"end_col": 16,
"end_line": 67,
"start_col": 2,
"start_line": 66
} |
Prims.Tot | val q:n: nat{n < pow2 256} | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) | val q:n: nat{n < pow2 256}
let q:n: nat{n < pow2 256} = | false | null | false | assert_norm (pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Prims.op_Addition",
"Prims.pow2",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64 | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val q:n: nat{n < pow2 256} | [] | Spec.Ed25519.q | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.nat{n < Prims.pow2 256} | {
"end_col": 53,
"end_line": 23,
"start_col": 2,
"start_line": 22
} |
Prims.Tot | val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity | val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ = | false | null | false | EL.to_aff_point_at_infinity_lemma ();
point_at_infinity | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Prims.unit",
"Spec.Ed25519.PointOps.point_at_infinity",
"Spec.Ed25519.Lemmas.to_aff_point_at_infinity_lemma",
"Spec.Ed25519.ext_point_c"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid | [] | Spec.Ed25519.point_at_inifinity_c | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.one_st Spec.Ed25519.ext_point_c Spec.Ed25519.mk_to_ed25519_comm_monoid | {
"end_col": 19,
"end_line": 57,
"start_col": 2,
"start_line": 56
} |
Prims.Tot | val point_mul_g (a: lbytes 32) : ext_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g | val point_mul_g (a: lbytes 32) : ext_point_c
let point_mul_g (a: lbytes 32) : ext_point_c = | false | null | false | EL.g_is_on_curve ();
point_mul a g | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Ed25519.point_mul",
"Spec.Ed25519.PointOps.g",
"Prims.unit",
"Spec.Ed25519.Lemmas.g_is_on_curve",
"Spec.Ed25519.ext_point_c"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_g (a: lbytes 32) : ext_point_c | [] | Spec.Ed25519.point_mul_g | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.ByteSequence.lbytes 32 -> Spec.Ed25519.ext_point_c | {
"end_col": 15,
"end_line": 87,
"start_col": 2,
"start_line": 86
} |
Prims.Tot | val point_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p | val point_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c
let point_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c = | false | null | false | EL.g_is_on_curve ();
point_mul_double a1 g a2 p | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.point_mul_double",
"Spec.Ed25519.PointOps.g",
"Prims.unit",
"Spec.Ed25519.Lemmas.g_is_on_curve"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c | [] | Spec.Ed25519.point_mul_double_g | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a1: Lib.ByteSequence.lbytes 32 -> a2: Lib.ByteSequence.lbytes 32 -> p: Spec.Ed25519.ext_point_c
-> Spec.Ed25519.ext_point_c | {
"end_col": 28,
"end_line": 92,
"start_col": 2,
"start_line": 91
} |
Prims.Tot | val sha512_modq (len: nat{len <= max_input_length_sha512}) (s: bytes{length s = len})
: n: nat{n < pow2 256} | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q | val sha512_modq (len: nat{len <= max_input_length_sha512}) (s: bytes{length s = len})
: n: nat{n < pow2 256}
let sha512_modq (len: nat{len <= max_input_length_sha512}) (s: bytes{length s = len})
: n: nat{n < pow2 256} = | false | null | false | nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Ed25519.max_input_length_sha512",
"Lib.ByteSequence.bytes",
"Prims.op_Equality",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Modulus",
"Lib.ByteSequence.nat_from_bytes_le",
"Spec.Agile.Hash.hash",
"Spec.Hash.Definitions.SHA2_512",
"Spec.Ed25519.q",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64) | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha512_modq (len: nat{len <= max_input_length_sha512}) (s: bytes{length s = len})
: n: nat{n < pow2 256} | [] | Spec.Ed25519.sha512_modq | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len <= Spec.Ed25519.max_input_length_sha512} ->
s: Lib.ByteSequence.bytes{Lib.Sequence.length s = len}
-> n: Prims.nat{n < Prims.pow2 256} | {
"end_col": 79,
"end_line": 30,
"start_col": 2,
"start_line": 30
} |
Prims.Tot | val mk_ed25519_comm_monoid:LE.comm_monoid aff_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
} | val mk_ed25519_comm_monoid:LE.comm_monoid aff_point_c
let mk_ed25519_comm_monoid:LE.comm_monoid aff_point_c = | false | null | false | {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma
} | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.Mkcomm_monoid",
"Spec.Ed25519.aff_point_c",
"Spec.Ed25519.PointOps.aff_point_at_infinity",
"Spec.Ed25519.aff_point_add_c",
"Spec.Ed25519.Lemmas.aff_point_at_infinity_lemma",
"Spec.Ed25519.Lemmas.aff_point_add_assoc_lemma",
"Spec.Ed25519.Lemmas.aff_point_add_comm_lemma"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q | false | true | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_ed25519_comm_monoid:LE.comm_monoid aff_point_c | [] | Spec.Ed25519.mk_ed25519_comm_monoid | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Lib.Exponentiation.Definition.comm_monoid Spec.Ed25519.aff_point_c | {
"end_col": 50,
"end_line": 44,
"start_col": 2,
"start_line": 40
} |
Prims.Tot | val point_mul_double (a1: lbytes 32) (p1: ext_point_c) (a2: lbytes 32) (p2: ext_point_c)
: ext_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5 | val point_mul_double (a1: lbytes 32) (p1: ext_point_c) (a2: lbytes 32) (p2: ext_point_c)
: ext_point_c
let point_mul_double (a1: lbytes 32) (p1: ext_point_c) (a2: lbytes 32) (p2: ext_point_c)
: ext_point_c = | false | null | false | SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5 | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Ed25519.ext_point_c",
"Spec.Exponentiation.exp_double_fw",
"Spec.Ed25519.mk_ed25519_concrete_ops",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.SEC"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2 | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_double (a1: lbytes 32) (p1: ext_point_c) (a2: lbytes 32) (p2: ext_point_c)
: ext_point_c | [] | Spec.Ed25519.point_mul_double | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a1: Lib.ByteSequence.lbytes 32 ->
p1: Spec.Ed25519.ext_point_c ->
a2: Lib.ByteSequence.lbytes 32 ->
p2: Spec.Ed25519.ext_point_c
-> Spec.Ed25519.ext_point_c | {
"end_col": 100,
"end_line": 82,
"start_col": 2,
"start_line": 82
} |
Prims.Tot | val point_mul (a: lbytes 32) (p: ext_point_c) : ext_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4 | val point_mul (a: lbytes 32) (p: ext_point_c) : ext_point_c
let point_mul (a: lbytes 32) (p: ext_point_c) : ext_point_c = | false | null | false | SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4 | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Ed25519.ext_point_c",
"Spec.Exponentiation.exp_fw",
"Spec.Ed25519.mk_ed25519_concrete_ops",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.SEC"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul (a: lbytes 32) (p: ext_point_c) : ext_point_c | [] | Spec.Ed25519.point_mul | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.ByteSequence.lbytes 32 -> p: Spec.Ed25519.ext_point_c -> Spec.Ed25519.ext_point_c | {
"end_col": 65,
"end_line": 78,
"start_col": 2,
"start_line": 78
} |
Prims.Tot | val secret_to_public (secret: lbytes 32) : lbytes 32 | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let secret_to_public (secret:lbytes 32) : lbytes 32 =
let a, dummy = secret_expand secret in
point_compress (point_mul_g a) | val secret_to_public (secret: lbytes 32) : lbytes 32
let secret_to_public (secret: lbytes 32) : lbytes 32 = | false | null | false | let a, dummy = secret_expand secret in
point_compress (point_mul_g a) | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Ed25519.PointOps.point_compress",
"Spec.Ed25519.point_mul_g",
"FStar.Pervasives.Native.tuple2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Ed25519.secret_expand"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API
let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val secret_to_public (secret: lbytes 32) : lbytes 32 | [] | Spec.Ed25519.secret_to_public | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | secret: Lib.ByteSequence.lbytes 32 -> Lib.ByteSequence.lbytes 32 | {
"end_col": 32,
"end_line": 113,
"start_col": 53,
"start_line": 111
} |
Prims.Tot | val point_negate_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1 | val point_negate_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c
let point_negate_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c = | false | null | false | let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1 | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.point_mul_double_g",
"Prims.unit",
"Spec.Ed25519.Lemmas.to_aff_point_negate",
"Spec.Ed25519.PointOps.ext_point",
"Spec.Ed25519.PointOps.point_negate"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_negate_mul_double_g (a1 a2: lbytes 32) (p: ext_point_c) : ext_point_c | [] | Spec.Ed25519.point_negate_mul_double_g | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a1: Lib.ByteSequence.lbytes 32 -> a2: Lib.ByteSequence.lbytes 32 -> p: Spec.Ed25519.ext_point_c
-> Spec.Ed25519.ext_point_c | {
"end_col": 29,
"end_line": 98,
"start_col": 91,
"start_line": 95
} |
Prims.Tot | val sign: secret:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> lbytes 64 | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sign secret msg =
let pub, s, prefix = expand_keys secret in
sign_expanded pub s prefix msg | val sign: secret:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> lbytes 64
let sign secret msg = | false | null | false | let pub, s, prefix = expand_keys secret in
sign_expanded pub s prefix msg | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Spec.Ed25519.sign_expanded",
"FStar.Pervasives.Native.tuple3",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Ed25519.expand_keys"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API
let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high
let secret_to_public (secret:lbytes 32) : lbytes 32 =
let a, dummy = secret_expand secret in
point_compress (point_mul_g a)
let expand_keys (secret:lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) =
let s, prefix = secret_expand secret in
let pub = point_compress (point_mul_g s) in
pub, s, prefix
val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64
let sign_expanded pub s prefix msg =
let len = length msg in
let r = sha512_modq (32 + len) (Seq.append prefix msg) in
let r' = point_mul_g (nat_to_bytes_le 32 r) in
let rs = point_compress r' in
let h = sha512_modq (64 + len) (Seq.append (concat rs pub) msg) in
let s = (r + (h * nat_from_bytes_le s) % q) % q in
concat #_ #32 #32 rs (nat_to_bytes_le 32 s) | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sign: secret:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> lbytes 64 | [] | Spec.Ed25519.sign | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
secret: Lib.ByteSequence.lbytes 32 ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t}
-> Lib.ByteSequence.lbytes 64 | {
"end_col": 32,
"end_line": 136,
"start_col": 21,
"start_line": 134
} |
Prims.Tot | val expand_keys (secret: lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let expand_keys (secret:lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) =
let s, prefix = secret_expand secret in
let pub = point_compress (point_mul_g s) in
pub, s, prefix | val expand_keys (secret: lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32)
let expand_keys (secret: lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) = | false | null | false | let s, prefix = secret_expand secret in
let pub = point_compress (point_mul_g s) in
pub, s, prefix | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"FStar.Pervasives.Native.Mktuple3",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Ed25519.PointOps.point_compress",
"Spec.Ed25519.point_mul_g",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Spec.Ed25519.secret_expand"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API
let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high
let secret_to_public (secret:lbytes 32) : lbytes 32 =
let a, dummy = secret_expand secret in
point_compress (point_mul_g a) | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val expand_keys (secret: lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) | [] | Spec.Ed25519.expand_keys | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | secret: Lib.ByteSequence.lbytes 32
-> (Lib.ByteSequence.lbytes 32 * Lib.ByteSequence.lbytes 32) * Lib.ByteSequence.lbytes 32 | {
"end_col": 16,
"end_line": 119,
"start_col": 74,
"start_line": 116
} |
Prims.Tot | val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64 | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sign_expanded pub s prefix msg =
let len = length msg in
let r = sha512_modq (32 + len) (Seq.append prefix msg) in
let r' = point_mul_g (nat_to_bytes_le 32 r) in
let rs = point_compress r' in
let h = sha512_modq (64 + len) (Seq.append (concat rs pub) msg) in
let s = (r + (h * nat_from_bytes_le s) % q) % q in
concat #_ #32 #32 rs (nat_to_bytes_le 32 s) | val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64
let sign_expanded pub s prefix msg = | false | null | false | let len = length msg in
let r = sha512_modq (32 + len) (Seq.append prefix msg) in
let r' = point_mul_g (nat_to_bytes_le 32 r) in
let rs = point_compress r' in
let h = sha512_modq (64 + len) (Seq.append (concat rs pub) msg) in
let s = (r + (h * nat_from_bytes_le s) % q) % q in
concat #_ #32 #32 rs (nat_to_bytes_le 32 s) | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.concat",
"Lib.ByteSequence.nat_to_bytes_le",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.ByteSequence.nat_from_bytes_le",
"Spec.Ed25519.q",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Spec.Ed25519.sha512_modq",
"FStar.Seq.Base.append",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Ed25519.PointOps.point_compress",
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.point_mul_g"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API
let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high
let secret_to_public (secret:lbytes 32) : lbytes 32 =
let a, dummy = secret_expand secret in
point_compress (point_mul_g a)
let expand_keys (secret:lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) =
let s, prefix = secret_expand secret in
let pub = point_compress (point_mul_g s) in
pub, s, prefix | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64 | [] | Spec.Ed25519.sign_expanded | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pub: Lib.ByteSequence.lbytes 32 ->
s: Lib.ByteSequence.lbytes 32 ->
prefix: Lib.ByteSequence.lbytes 32 ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t}
-> Lib.ByteSequence.lbytes 64 | {
"end_col": 45,
"end_line": 130,
"start_col": 36,
"start_line": 123
} |
Prims.Tot | val secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32) | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high | val secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32)
let secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32) = | false | null | false | let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low:lbytes 32 = slice h 0 32 in
let h_high:lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0 ] <- h_low.[ 0 ] &. u8 0xf8 in
let h_low = h_low.[ 31 ] <- (h_low.[ 31 ] &. u8 127) |. u8 64 in
h_low, h_high | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntTypes.logor",
"Lib.IntTypes.logand",
"Lib.Sequence.index",
"Lib.IntTypes.mk_int",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.op_Amp_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.u8",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Spec.Hash.Definitions.hash_length'",
"Spec.Hash.Definitions.SHA2_512",
"Spec.Agile.Hash.hash",
"FStar.Pervasives.Native.tuple2"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val secret_expand (secret: lbytes 32) : (lbytes 32 & lbytes 32) | [] | Spec.Ed25519.secret_expand | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | secret: Lib.ByteSequence.lbytes 32 -> Lib.ByteSequence.lbytes 32 * Lib.ByteSequence.lbytes 32 | {
"end_col": 15,
"end_line": 108,
"start_col": 64,
"start_line": 102
} |
Prims.Tot | val verify: public:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> signature:lbytes 64 -> bool | [
{
"abbrev": false,
"full_module": "Spec.Ed25519.PointOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519.Lemmas",
"short_module": "EL"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let verify public msg signature =
let len = length msg in
let a' = point_decompress public in
match a' with
| None -> false
| Some a' -> (
let rs = slice signature 0 32 in
let r' = point_decompress rs in
match r' with
| None -> false
| Some r' -> (
let sb = slice signature 32 64 in
if nat_from_bytes_le sb >= q then false
else (
let h = sha512_modq (64 + len) (Seq.append (concat rs public) msg) in
let hb = nat_to_bytes_le 32 h in
EL.point_decompress_lemma public;
let exp_d = point_negate_mul_double_g sb hb a' in
point_equal exp_d r'
)
)
) | val verify: public:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> signature:lbytes 64 -> bool
let verify public msg signature = | false | null | false | let len = length msg in
let a' = point_decompress public in
match a' with
| None -> false
| Some a' ->
(let rs = slice signature 0 32 in
let r' = point_decompress rs in
match r' with
| None -> false
| Some r' ->
(let sb = slice signature 32 64 in
if nat_from_bytes_le sb >= q
then false
else
(let h = sha512_modq (64 + len) (Seq.append (concat rs public) msg) in
let hb = nat_to_bytes_le 32 h in
EL.point_decompress_lemma public;
let exp_d = point_negate_mul_double_g sb hb a' in
point_equal exp_d r'))) | {
"checked_file": "Spec.Ed25519.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.PointOps.fst.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Curve25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Ed25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Spec.Ed25519.PointOps.ext_point",
"Prims.op_GreaterThanOrEqual",
"Lib.ByteSequence.nat_from_bytes_le",
"Spec.Ed25519.q",
"Prims.bool",
"Spec.Ed25519.PointOps.point_equal",
"Spec.Ed25519.ext_point_c",
"Spec.Ed25519.point_negate_mul_double_g",
"Prims.unit",
"Spec.Ed25519.Lemmas.point_decompress_lemma",
"Lib.Sequence.seq",
"Lib.IntTypes.int_t",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"Prims.l_or",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.ByteSequence.nat_to_bytes_le",
"Spec.Ed25519.sha512_modq",
"Prims.op_Addition",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Prims.op_Subtraction",
"Lib.Sequence.lseq",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice",
"FStar.Pervasives.Native.option",
"Spec.Ed25519.PointOps.point_decompress"
] | [] | module Spec.Ed25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module EL = Spec.Ed25519.Lemmas
include Spec.Ed25519.PointOps
#reset-options "--fuel 0 --ifuel 0 --z3rlimit 100"
inline_for_extraction
let size_signature: size_nat = 64
let q: n:nat{n < pow2 256} =
assert_norm(pow2 252 + 27742317777372353535851937790883648493 < pow2 255 - 19);
(pow2 252 + 27742317777372353535851937790883648493) // Group order
let max_input_length_sha512 = Some?.v (Spec.Hash.Definitions.max_input_length Spec.Hash.Definitions.SHA2_512)
let _: squash(max_input_length_sha512 > pow2 32 + 64) =
assert_norm (max_input_length_sha512 > pow2 32 + 64)
let sha512_modq (len:nat{len <= max_input_length_sha512}) (s:bytes{length s = len}) : n:nat{n < pow2 256} =
nat_from_bytes_le (Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 s) % q
/// Point Multiplication
let aff_point_c = p:aff_point{is_on_curve p}
let aff_point_add_c (p:aff_point_c) (q:aff_point_c) : aff_point_c =
EL.aff_point_add_lemma p q;
aff_point_add p q
let mk_ed25519_comm_monoid: LE.comm_monoid aff_point_c = {
LE.one = aff_point_at_infinity;
LE.mul = aff_point_add_c;
LE.lemma_one = EL.aff_point_at_infinity_lemma;
LE.lemma_mul_assoc = EL.aff_point_add_assoc_lemma;
LE.lemma_mul_comm = EL.aff_point_add_comm_lemma;
}
let ext_point_c = p:ext_point{point_inv p}
let mk_to_ed25519_comm_monoid : SE.to_comm_monoid ext_point_c = {
SE.a_spec = aff_point_c;
SE.comm_monoid = mk_ed25519_comm_monoid;
SE.refl = (fun (x:ext_point_c) -> to_aff_point x);
}
val point_at_inifinity_c: SE.one_st ext_point_c mk_to_ed25519_comm_monoid
let point_at_inifinity_c _ =
EL.to_aff_point_at_infinity_lemma ();
point_at_infinity
val point_add_c: SE.mul_st ext_point_c mk_to_ed25519_comm_monoid
let point_add_c p q =
EL.to_aff_point_add_lemma p q;
point_add p q
val point_double_c: SE.sqr_st ext_point_c mk_to_ed25519_comm_monoid
let point_double_c p =
EL.to_aff_point_double_lemma p;
point_double p
let mk_ed25519_concrete_ops : SE.concrete_ops ext_point_c = {
SE.to = mk_to_ed25519_comm_monoid;
SE.one = point_at_inifinity_c;
SE.mul = point_add_c;
SE.sqr = point_double_c;
}
// [a]P
let point_mul (a:lbytes 32) (p:ext_point_c) : ext_point_c =
SE.exp_fw mk_ed25519_concrete_ops p 256 (nat_from_bytes_le a) 4
// [a1]P1 + [a2]P2
let point_mul_double (a1:lbytes 32) (p1:ext_point_c) (a2:lbytes 32) (p2:ext_point_c) : ext_point_c =
SE.exp_double_fw mk_ed25519_concrete_ops p1 256 (nat_from_bytes_le a1) p2 (nat_from_bytes_le a2) 5
// [a]G
let point_mul_g (a:lbytes 32) : ext_point_c =
EL.g_is_on_curve ();
point_mul a g
// [a1]G + [a2]P
let point_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
EL.g_is_on_curve ();
point_mul_double a1 g a2 p
// [a1]G - [a2]P
let point_negate_mul_double_g (a1:lbytes 32) (a2:lbytes 32) (p:ext_point_c) : ext_point_c =
let p1 = point_negate p in
EL.to_aff_point_negate p;
point_mul_double_g a1 a2 p1
/// Ed25519 API
let secret_expand (secret:lbytes 32) : (lbytes 32 & lbytes 32) =
let h = Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512 secret in
let h_low : lbytes 32 = slice h 0 32 in
let h_high : lbytes 32 = slice h 32 64 in
let h_low = h_low.[ 0] <- h_low.[0] &. u8 0xf8 in
let h_low = h_low.[31] <- (h_low.[31] &. u8 127) |. u8 64 in
h_low, h_high
let secret_to_public (secret:lbytes 32) : lbytes 32 =
let a, dummy = secret_expand secret in
point_compress (point_mul_g a)
let expand_keys (secret:lbytes 32) : (lbytes 32 & lbytes 32 & lbytes 32) =
let s, prefix = secret_expand secret in
let pub = point_compress (point_mul_g s) in
pub, s, prefix
val sign_expanded (pub s prefix:lbytes 32) (msg:bytes{length msg <= max_size_t}) : lbytes 64
let sign_expanded pub s prefix msg =
let len = length msg in
let r = sha512_modq (32 + len) (Seq.append prefix msg) in
let r' = point_mul_g (nat_to_bytes_le 32 r) in
let rs = point_compress r' in
let h = sha512_modq (64 + len) (Seq.append (concat rs pub) msg) in
let s = (r + (h * nat_from_bytes_le s) % q) % q in
concat #_ #32 #32 rs (nat_to_bytes_le 32 s)
val sign: secret:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> lbytes 64
let sign secret msg =
let pub, s, prefix = expand_keys secret in
sign_expanded pub s prefix msg | false | false | Spec.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val verify: public:lbytes 32 -> msg:bytes{length msg <= max_size_t} -> signature:lbytes 64 -> bool | [] | Spec.Ed25519.verify | {
"file_name": "specs/Spec.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
public: Lib.ByteSequence.lbytes 32 ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t} ->
signature: Lib.ByteSequence.lbytes 64
-> Prims.bool | {
"end_col": 3,
"end_line": 162,
"start_col": 33,
"start_line": 140
} |
FStar.Tactics.Effect.Tac | val name_of_binder (b: binder) : Tac string | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let name_of_binder (b : binder) : Tac string =
unseal b.ppname | val name_of_binder (b: binder) : Tac string
let name_of_binder (b: binder) : Tac string = | true | null | false | unseal b.ppname | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.binder",
"FStar.Tactics.Unseal.unseal",
"Prims.string",
"FStar.Tactics.NamedView.__proj__Mkbinder__item__ppname"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val name_of_binder (b: binder) : Tac string | [] | FStar.Tactics.V2.Derived.name_of_binder | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: FStar.Tactics.NamedView.binder -> FStar.Tactics.Effect.Tac Prims.string | {
"end_col": 17,
"end_line": 42,
"start_col": 2,
"start_line": 42
} |
FStar.Tactics.Effect.Tac | val binding_to_string (b: binding) : Tac string | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let binding_to_string (b : binding) : Tac string =
unseal b.ppname | val binding_to_string (b: binding) : Tac string
let binding_to_string (b: binding) : Tac string = | true | null | false | unseal b.ppname | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.Unseal.unseal",
"Prims.string",
"FStar.Reflection.V2.Data.__proj__Mkbinding__item__ppname"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val binding_to_string (b: binding) : Tac string | [] | FStar.Tactics.V2.Derived.binding_to_string | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.string | {
"end_col": 17,
"end_line": 49,
"start_col": 2,
"start_line": 49
} |
FStar.Tactics.Effect.Tac | val apply (t: term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let apply (t : term) : Tac unit =
t_apply true false false t | val apply (t: term) : Tac unit
let apply (t: term) : Tac unit = | true | null | false | t_apply true false false t | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Builtins.t_apply",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply (t: term) : Tac unit | [] | FStar.Tactics.V2.Derived.apply | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 30,
"end_line": 182,
"start_col": 4,
"start_line": 182
} |
FStar.Tactics.Effect.Tac | val topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw | val topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit
let topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit = | true | null | false | let ctrl' (t: term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Prims.int",
"Prims.unit",
"FStar.Tactics.V2.Builtins.ctrl_rewrite",
"FStar.Tactics.Types.TopDown",
"FStar.Tactics.Types.ctrl_flag",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.Types.Continue",
"FStar.Tactics.Types.Skip",
"FStar.Tactics.Types.Abort",
"FStar.Tactics.V2.Derived.fail"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int)) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit | [] | FStar.Tactics.V2.Derived.topdown_rewrite | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
ctrl: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (Prims.bool * Prims.int)) ->
rw: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 33,
"end_line": 274,
"start_col": 3,
"start_line": 263
} |
FStar.Tactics.Effect.Tac | val exact_with_ref (t: term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t) | val exact_with_ref (t: term) : Tac unit
let exact_with_ref (t: term) : Tac unit = | true | null | false | with_policy SMT (fun () -> t_exact true true t) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.with_policy",
"Prims.unit",
"FStar.Tactics.Types.SMT",
"FStar.Tactics.V2.Builtins.t_exact"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exact_with_ref (t: term) : Tac unit | [] | FStar.Tactics.V2.Derived.exact_with_ref | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 51,
"end_line": 114,
"start_col": 4,
"start_line": 114
} |
FStar.Tactics.Effect.Tac | val apply_lemma_noinst (t: term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t | val apply_lemma_noinst (t: term) : Tac unit
let apply_lemma_noinst (t: term) : Tac unit = | true | null | false | t_apply_lemma true false t | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Builtins.t_apply_lemma",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply_lemma_noinst (t: term) : Tac unit | [] | FStar.Tactics.V2.Derived.apply_lemma_noinst | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 30,
"end_line": 209,
"start_col": 4,
"start_line": 209
} |
FStar.Tactics.Effect.Tac | val cur_env: Prims.unit -> Tac env | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cur_env () : Tac env = goal_env (_cur_goal ()) | val cur_env: Prims.unit -> Tac env
let cur_env () : Tac env = | true | null | false | goal_env (_cur_goal ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.Types.goal_env",
"FStar.Reflection.Types.env",
"FStar.Tactics.Types.goal",
"FStar.Tactics.V2.Derived._cur_goal"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cur_env: Prims.unit -> Tac env | [] | FStar.Tactics.V2.Derived.cur_env | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.env | {
"end_col": 50,
"end_line": 78,
"start_col": 27,
"start_line": 78
} |
FStar.Tactics.Effect.Tac | val unify (t1 t2: term) : Tac bool | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2 | val unify (t1 t2: term) : Tac bool
let unify (t1 t2: term) : Tac bool = | true | null | false | let e = cur_env () in
unify_env e t1 t2 | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Builtins.unify_env",
"Prims.bool",
"FStar.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unify (t1 t2: term) : Tac bool | [] | FStar.Tactics.V2.Derived.unify | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.bool | {
"end_col": 21,
"end_line": 291,
"start_col": 37,
"start_line": 289
} |
FStar.Tactics.Effect.Tac | val ngoals: Prims.unit -> Tac int | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ngoals () : Tac int = List.Tot.Base.length (goals ()) | val ngoals: Prims.unit -> Tac int
let ngoals () : Tac int = | true | null | false | List.Tot.Base.length (goals ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.List.Tot.Base.length",
"FStar.Tactics.Types.goal",
"Prims.int",
"Prims.list",
"FStar.Tactics.V2.Derived.goals"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ngoals: Prims.unit -> Tac int | [] | FStar.Tactics.V2.Derived.ngoals | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int | {
"end_col": 57,
"end_line": 382,
"start_col": 26,
"start_line": 382
} |
FStar.Tactics.Effect.Tac | val guards_to_smt: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
() | val guards_to_smt: Prims.unit -> Tac unit
let guards_to_smt () : Tac unit = | true | null | false | let _ = repeat skip_guard in
() | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.V2.Derived.repeat",
"FStar.Tactics.V2.Derived.skip_guard"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail "" | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val guards_to_smt: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.guards_to_smt | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 6,
"end_line": 526,
"start_col": 33,
"start_line": 524
} |
FStar.Tactics.Effect.Tac | val apply_raw (t: term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let apply_raw (t : term) : Tac unit =
t_apply false false false t | val apply_raw (t: term) : Tac unit
let apply_raw (t: term) : Tac unit = | true | null | false | t_apply false false false t | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Builtins.t_apply",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply_raw (t: term) : Tac unit | [] | FStar.Tactics.V2.Derived.apply_raw | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 31,
"end_line": 218,
"start_col": 4,
"start_line": 218
} |
FStar.Tactics.Effect.Tac | val goals: Prims.unit -> Tac (list goal) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let goals () : Tac (list goal) = goals_of (get ()) | val goals: Prims.unit -> Tac (list goal)
let goals () : Tac (list goal) = | true | null | false | goals_of (get ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.Types.goals_of",
"Prims.list",
"FStar.Tactics.Types.goal",
"FStar.Tactics.Types.proofstate",
"FStar.Tactics.Effect.get"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val goals: Prims.unit -> Tac (list goal) | [] | FStar.Tactics.V2.Derived.goals | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.Types.goal) | {
"end_col": 50,
"end_line": 59,
"start_col": 33,
"start_line": 59
} |
FStar.Tactics.Effect.Tac | val whnf: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let whnf () : Tac unit = norm [weak; hnf; primops; delta] | val whnf: Prims.unit -> Tac unit
let whnf () : Tac unit = | true | null | false | norm [weak; hnf; primops; delta] | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.weak",
"FStar.Pervasives.hnf",
"FStar.Pervasives.primops",
"FStar.Pervasives.delta",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
() | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val whnf: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.whnf | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 60,
"end_line": 529,
"start_col": 28,
"start_line": 529
} |
Prims.Tot | val mk_squash (t: term) : Tot term | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | val mk_squash (t: term) : Tot term
let mk_squash (t: term) : Tot term = | false | null | false | let sq:term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
"total"
] | [
"FStar.Tactics.NamedView.term",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Reflection.Types.term",
"Prims.Nil",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_FVar",
"FStar.Reflection.V2.Builtins.pack_fv",
"FStar.Reflection.Const.squash_qn"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl | false | true | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_squash (t: term) : Tot term | [] | FStar.Tactics.V2.Derived.mk_squash | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.NamedView.term | {
"end_col": 19,
"end_line": 657,
"start_col": 37,
"start_line": 655
} |
FStar.Tactics.Effect.Tac | val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t | val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
let repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) = | true | null | false | t () :: repeat t | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"Prims.Cons",
"Prims.list",
"FStar.Tactics.V2.Derived.repeat"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) | [] | FStar.Tactics.V2.Derived.repeat1 | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac (Prims.list a) | {
"end_col": 20,
"end_line": 474,
"start_col": 4,
"start_line": 474
} |
FStar.Tactics.Effect.Tac | val intro_as (s: string) : Tac binding | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s | val intro_as (s: string) : Tac binding
let intro_as (s: string) : Tac binding = | true | null | false | let b = intro () in
rename_to b s | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.string",
"FStar.Tactics.V2.Builtins.rename_to",
"FStar.Reflection.V2.Data.binding",
"FStar.Tactics.V2.Builtins.intro",
"FStar.Tactics.NamedView.binding"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro () | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intro_as (s: string) : Tac binding | [] | FStar.Tactics.V2.Derived.intro_as | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | {
"end_col": 17,
"end_line": 555,
"start_col": 39,
"start_line": 553
} |
FStar.Tactics.Effect.Tac | val is_guard: Prims.unit -> Tac bool | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ()) | val is_guard: Prims.unit -> Tac bool
let is_guard () : Tac bool = | true | null | false | Tactics.Types.is_guard (_cur_goal ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.Types.is_guard",
"Prims.bool",
"FStar.Tactics.Types.goal",
"FStar.Tactics.V2.Derived._cur_goal"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_guard: Prims.unit -> Tac bool | [] | FStar.Tactics.V2.Derived.is_guard | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.bool | {
"end_col": 41,
"end_line": 517,
"start_col": 4,
"start_line": 517
} |
FStar.Tactics.Effect.Tac | val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in () | val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit
let discard (tau: (unit -> Tac 'a)) : unit -> Tac unit = | true | null | false | fun () ->
let _ = tau () in
() | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs' | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit | [] | FStar.Tactics.V2.Derived.discard | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> _: Prims.unit
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 34,
"end_line": 500,
"start_col": 4,
"start_line": 500
} |
Prims.Tot | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let __cut a b f x = f x | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
let __cut a b f x = | false | null | false | f x | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
"total"
] | [] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b | [] | FStar.Tactics.V2.Derived.__cut | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: Type -> f: (_: a -> b) -> x: a -> b | {
"end_col": 31,
"end_line": 539,
"start_col": 28,
"start_line": 539
} |
FStar.Tactics.Effect.Tac | val apply_noinst (t: term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let apply_noinst (t : term) : Tac unit =
t_apply true true false t | val apply_noinst (t: term) : Tac unit
let apply_noinst (t: term) : Tac unit = | true | null | false | t_apply true true false t | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Builtins.t_apply",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply_noinst (t: term) : Tac unit | [] | FStar.Tactics.V2.Derived.apply_noinst | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 29,
"end_line": 185,
"start_col": 4,
"start_line": 185
} |
FStar.Tactics.Effect.Tac | val commute_applied_match: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let commute_applied_match () : Tac unit =
t_commute_applied_match () | val commute_applied_match: Prims.unit -> Tac unit
let commute_applied_match () : Tac unit = | true | null | false | t_commute_applied_match () | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.t_commute_applied_match"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val commute_applied_match: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.commute_applied_match | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 28,
"end_line": 204,
"start_col": 2,
"start_line": 204
} |
FStar.Tactics.Effect.Tac | val l_to_r (lems: list term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl | val l_to_r (lems: list term) : Tac unit
let l_to_r (lems: list term) : Tac unit = | true | null | false | let first_or_trefl () : Tac unit =
fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems ()
in
pointwise first_or_trefl | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.list",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.pointwise",
"Prims.unit",
"FStar.Tactics.Util.fold_left",
"FStar.Tactics.V2.Derived.or_else",
"FStar.Tactics.V2.Derived.apply_lemma_rw",
"FStar.Tactics.V2.Derived.trefl"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val l_to_r (lems: list term) : Tac unit | [] | FStar.Tactics.V2.Derived.l_to_r | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | lems: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 28,
"end_line": 653,
"start_col": 40,
"start_line": 647
} |
FStar.Tactics.Effect.Tac | val focus_all: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let focus_all () : Tac unit =
set_goals (goals () @ smt_goals ());
set_smt_goals [] | val focus_all: Prims.unit -> Tac unit
let focus_all () : Tac unit = | true | null | false | set_goals (goals () @ smt_goals ());
set_smt_goals [] | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.set_smt_goals",
"Prims.Nil",
"FStar.Tactics.Types.goal",
"FStar.Tactics.V2.Builtins.set_goals",
"Prims.list",
"FStar.Tactics.V2.Derived.op_At",
"FStar.Tactics.V2.Derived.smt_goals",
"FStar.Tactics.V2.Derived.goals"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y
let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
)
(*
* Specialize a function by partially evaluating it
* For example:
* let rec foo (l:list int) (x:int) :St int =
match l with
| [] -> x
| hd::tl -> x + foo tl x
let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo])
* would make the definition of f as x + x + x
*
* f is the term that needs to be specialized
* l is the list of names to be delta-ed
*)
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit
= fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
let tlabel (l:string) =
match goals () with
| [] -> fail "tlabel: no goals"
| h::t ->
set_goals (set_label l h :: t)
let tlabel' (l:string) =
match goals () with
| [] -> fail "tlabel': no goals"
| h::t ->
let h = set_label (l ^ get_label h) h in
set_goals (h :: t) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val focus_all: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.focus_all | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 20,
"end_line": 782,
"start_col": 4,
"start_line": 781
} |
FStar.Tactics.Effect.Tac | val unify_guard (t1 t2: term) : Tac bool | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2 | val unify_guard (t1 t2: term) : Tac bool
let unify_guard (t1 t2: term) : Tac bool = | true | null | false | let e = cur_env () in
unify_guard_env e t1 t2 | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Builtins.unify_guard_env",
"Prims.bool",
"FStar.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2 | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unify_guard (t1 t2: term) : Tac bool | [] | FStar.Tactics.V2.Derived.unify_guard | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.bool | {
"end_col": 27,
"end_line": 295,
"start_col": 43,
"start_line": 293
} |
FStar.Tactics.Effect.Tac | val simpl: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let simpl () : Tac unit = norm [simplify; primops] | val simpl: Prims.unit -> Tac unit
let simpl () : Tac unit = | true | null | false | norm [simplify; primops] | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.simplify",
"FStar.Pervasives.primops",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
() | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val simpl: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.simpl | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 52,
"end_line": 528,
"start_col": 28,
"start_line": 528
} |
FStar.Tactics.Effect.Tac | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tadmit () = tadmit_t (`()) | let tadmit () = | true | null | false | tadmit_t (`()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.tadmit_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tadmit : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | [] | FStar.Tactics.V2.Derived.tadmit | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 30,
"end_line": 506,
"start_col": 16,
"start_line": 506
} |
|
FStar.Tactics.Effect.Tac | val ngoals_smt: Prims.unit -> Tac int | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) | val ngoals_smt: Prims.unit -> Tac int
let ngoals_smt () : Tac int = | true | null | false | List.Tot.Base.length (smt_goals ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.List.Tot.Base.length",
"FStar.Tactics.Types.goal",
"Prims.int",
"Prims.list",
"FStar.Tactics.V2.Derived.smt_goals"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ()) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ngoals_smt: Prims.unit -> Tac int | [] | FStar.Tactics.V2.Derived.ngoals_smt | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int | {
"end_col": 65,
"end_line": 385,
"start_col": 30,
"start_line": 385
} |
FStar.Tactics.Effect.Tac | val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () | val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit
let rec repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit = | true | null | false | let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in
() | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Pervasives.Native.option",
"FStar.Tactics.V2.Derived.trytac",
"FStar.Tactics.V2.Derived.seq",
"FStar.Tactics.V2.Derived.discard",
"FStar.Tactics.V2.Derived.repeatseq"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in () | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit | [
"recursion"
] | FStar.Tactics.V2.Derived.repeatseq | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 88,
"end_line": 504,
"start_col": 60,
"start_line": 503
} |
FStar.Tactics.Effect.Tac | val assumption: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let assumption () : Tac unit =
__assumption_aux (cur_vars ()) | val assumption: Prims.unit -> Tac unit
let assumption () : Tac unit = | true | null | false | __assumption_aux (cur_vars ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.__assumption_aux",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.cur_vars"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val assumption: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.assumption | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 34,
"end_line": 585,
"start_col": 4,
"start_line": 585
} |
FStar.Tactics.Effect.Tac | val admit_dump_t: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit) | val admit_dump_t: Prims.unit -> Tac unit
let admit_dump_t () : Tac unit = | true | null | false | dump "Admitting";
apply (`admit) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.apply",
"FStar.Tactics.V2.Builtins.dump"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val admit_dump_t: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.admit_dump_t | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 16,
"end_line": 704,
"start_col": 2,
"start_line": 703
} |
FStar.Tactics.Effect.Tac | val trytac (t: (unit -> Tac 'a)) : Tac (option 'a) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None | val trytac (t: (unit -> Tac 'a)) : Tac (option 'a)
let trytac (t: (unit -> Tac 'a)) : Tac (option 'a) = | true | null | false | try Some (t ()) with | _ -> None | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Some",
"Prims.exn",
"FStar.Pervasives.Native.None"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val trytac (t: (unit -> Tac 'a)) : Tac (option 'a) | [] | FStar.Tactics.V2.Derived.trytac | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a)
-> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option 'a) | {
"end_col": 15,
"end_line": 454,
"start_col": 4,
"start_line": 452
} |
FStar.Tactics.Effect.Tac | val add_elem (t: (unit -> Tac 'a)) : Tac 'a | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x
)
) | val add_elem (t: (unit -> Tac 'a)) : Tac 'a
let add_elem (t: (unit -> Tac 'a)) : Tac 'a = | true | null | false | focus (fun () ->
apply (`Cons);
focus (fun () ->
let x = t () in
qed ();
x)) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.focus",
"FStar.Tactics.V2.Derived.qed",
"FStar.Tactics.V2.Derived.apply"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl
let mk_squash (t : term) : Tot term =
let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t]
let mk_sq_eq (t1 t2 : term) : Tot term =
let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in
mk_squash (mk_e_app eq [t1; t2])
(** Rewrites all appearances of a term [t1] in the goal into [t2].
Creates a new goal for [t1 == t2]. *)
let grewrite (t1 t2 : term) : Tac unit =
let e = tcut (mk_sq_eq t1 t2) in
let e = pack (Tv_Var e) in
pointwise (fun () ->
(* If the LHS is a uvar, do nothing, so we do not instantiate it. *)
let is_uvar =
match term_as_formula (cur_goal()) with
| Comp (Eq _) lhs rhs ->
(match inspect lhs with
| Tv_Uvar _ _ -> true
| _ -> false)
| _ -> false
in
if is_uvar
then trefl ()
else try exact e with | _ -> trefl ())
private
let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = ()
(** A wrapper to [grewrite] which takes a binder of an equality type *)
let grewrite_eq (b:binding) : Tac unit =
match term_as_formula (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> exact b)]
| _ ->
begin match term_as_formula' (type_of_binding b) with
| Comp (Eq _) l r ->
grewrite l r;
iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq);
exact b)]
| _ ->
fail "grewrite_eq: binder type is not an equality"
end
private
let admit_dump_t () : Tac unit =
dump "Admitting";
apply (`admit)
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
let admit_dump #a #x () = x ()
private
let magic_dump_t () : Tac unit =
dump "Admitting";
apply (`magic);
exact (`());
()
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
let magic_dump #a #x () = x
let change_with t1 t2 : Tac unit =
focus (fun () ->
grewrite t1 t2;
iseq [idtac; trivial]
)
let change_sq (t1 : term) : Tac unit =
change (mk_e_app (`squash) [t1])
let finish_by (t : unit -> Tac 'a) : Tac 'a =
let x = t () in
or_else qed (fun () -> fail "finish_by: not finished");
x
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b =
dup ();
let x = focus (fun () -> finish_by t1) in
let y = t2 x in
trefl ();
y | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_elem (t: (unit -> Tac 'a)) : Tac 'a | [] | FStar.Tactics.V2.Derived.add_elem | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a | {
"end_col": 3,
"end_line": 747,
"start_col": 45,
"start_line": 740
} |
FStar.Tactics.Effect.Tac | val unfold_def (t: term) : Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv" | val unfold_def (t: term) : Tac unit
let unfold_def (t: term) : Tac unit = | true | null | false | match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv" | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Reflection.Types.fv",
"FStar.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_fully",
"Prims.string",
"Prims.Nil",
"Prims.unit",
"FStar.Reflection.V2.Builtins.implode_qn",
"FStar.Reflection.V2.Builtins.inspect_fv",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.NamedView.inspect"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (x:binding) : Tac unit =
((fun () -> rewrite x)
<|> (fun () -> var_retype x;
apply_lemma (`__eq_sym);
rewrite x)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binding x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_vars ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_vars ()) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unfold_def (t: term) : Tac unit | [] | FStar.Tactics.V2.Derived.unfold_def | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 46,
"end_line": 642,
"start_col": 4,
"start_line": 638
} |
FStar.Tactics.Effect.Tac | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs' | let join_all_smt_goals () = | true | null | false | let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in
set_goals gs;
set_smt_goals sgs' | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.Types.goal",
"FStar.Tactics.V2.Builtins.set_smt_goals",
"FStar.Tactics.V2.Builtins.set_goals",
"FStar.Tactics.V2.Derived.goals",
"FStar.Tactics.V2.Derived.repeat'",
"FStar.Tactics.V2.Builtins.join",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.V2.Derived.smt_goals"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val join_all_smt_goals : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | [] | FStar.Tactics.V2.Derived.join_all_smt_goals | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 20,
"end_line": 497,
"start_col": 27,
"start_line": 490
} |
|
FStar.Tactics.Effect.Tac | val open_modules: Prims.unit -> Tac (list name) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_modules () : Tac (list name) =
env_open_modules (top_env ()) | val open_modules: Prims.unit -> Tac (list name)
let open_modules () : Tac (list name) = | true | null | false | env_open_modules (top_env ()) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Reflection.V2.Builtins.env_open_modules",
"Prims.list",
"FStar.Reflection.Types.name",
"FStar.Reflection.Types.env",
"FStar.Tactics.V2.Builtins.top_env"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ()) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_modules: Prims.unit -> Tac (list name) | [] | FStar.Tactics.V2.Derived.open_modules | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Reflection.Types.name) | {
"end_col": 33,
"end_line": 283,
"start_col": 4,
"start_line": 283
} |
FStar.Tactics.Effect.Tac | val destruct_equality_implication (t: term) : Tac (option (formula * term)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None | val destruct_equality_implication (t: term) : Tac (option (formula * term))
let destruct_equality_implication (t: term) : Tac (option (formula * term)) = | true | null | false | match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
(match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None)
| _ -> None | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Pervasives.Native.option",
"FStar.Reflection.Types.typ",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.Formula.formula",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.None",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Reflection.V2.Formula.term_as_formula"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* sigh GGG fix names!! *)
let fresh_namedv_named (s:string) : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal s;
sort = seal (pack Tv_Unknown);
uniq = n;
})
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_namedv_named]. *)
let fresh_namedv () : Tac namedv =
let n = fresh () in
pack_namedv ({
ppname = seal ("x" ^ string_of_int n);
sort = seal (pack Tv_Unknown);
uniq = n;
})
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal s;
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_binder (t : typ) : Tac simple_binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Explicit;
attrs = [] ;
}
let fresh_implicit_binder (t : typ) : Tac binder =
let n = fresh () in
{
ppname = seal ("x" ^ string_of_int n);
sort = t;
uniq = n;
qual = Q_Implicit;
attrs = [] ;
}
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binding) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binding =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binding =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binding =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binding =
let b = pose t in
rename_to b s
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) =
map f (cur_vars ())
let rec revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
let binder_sort (b : binder) : Tot typ = b.sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (xs : list binding) : Tac unit =
match xs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
try exact b with | _ ->
try (apply (`FStar.Squash.return_squash);
exact b) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_vars ()) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val destruct_equality_implication (t: term) : Tac (option (formula * term)) | [] | FStar.Tactics.V2.Derived.destruct_equality_implication | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac
(FStar.Pervasives.Native.option (FStar.Reflection.V2.Formula.formula *
FStar.Tactics.NamedView.term)) | {
"end_col": 15,
"end_line": 595,
"start_col": 4,
"start_line": 588
} |
FStar.Tactics.Effect.Tac | val name_of_bv (bv: bv) : Tac string | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname) | val name_of_bv (bv: bv) : Tac string
let name_of_bv (bv: bv) : Tac string = | true | null | false | unseal ((inspect_bv bv).ppname) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.bv",
"FStar.Tactics.Unseal.unseal",
"Prims.string",
"FStar.Reflection.V2.Data.__proj__Mkbv_view__item__ppname",
"FStar.Tactics.NamedView.inspect_bv"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val name_of_bv (bv: bv) : Tac string | [] | FStar.Tactics.V2.Derived.name_of_bv | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | bv: FStar.Tactics.NamedView.bv -> FStar.Tactics.Effect.Tac Prims.string | {
"end_col": 35,
"end_line": 35,
"start_col": 4,
"start_line": 35
} |
FStar.Tactics.Effect.Tac | val type_of_var (x: namedv) : Tac typ | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort) | val type_of_var (x: namedv) : Tac typ
let type_of_var (x: namedv) : Tac typ = | true | null | false | unseal ((inspect_namedv x).sort) | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.namedv",
"FStar.Tactics.Unseal.unseal",
"FStar.Reflection.Types.typ",
"FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__sort",
"FStar.Tactics.NamedView.inspect_namedv"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_var (x: namedv) : Tac typ | [] | FStar.Tactics.V2.Derived.type_of_var | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Tactics.NamedView.namedv -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.typ | {
"end_col": 34,
"end_line": 52,
"start_col": 2,
"start_line": 52
} |
Prims.Tot | val type_of_binding (x: binding) : Tot typ | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_binding (x : binding) : Tot typ =
x.sort | val type_of_binding (x: binding) : Tot typ
let type_of_binding (x: binding) : Tot typ = | false | null | false | x.sort | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [
"total"
] | [
"FStar.Tactics.NamedView.binding",
"FStar.Reflection.V2.Data.__proj__Mkbinding__item__sort",
"FStar.Reflection.Types.typ"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort) | false | true | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_binding (x: binding) : Tot typ | [] | FStar.Tactics.V2.Derived.type_of_binding | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Tactics.NamedView.binding -> FStar.Reflection.Types.typ | {
"end_col": 8,
"end_line": 55,
"start_col": 2,
"start_line": 55
} |
FStar.Tactics.Effect.Tac | val bv_to_string (bv: bv) : Tac string | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv | val bv_to_string (bv: bv) : Tac string
let bv_to_string (bv: bv) : Tac string = | true | null | false | name_of_bv bv | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"FStar.Tactics.NamedView.bv",
"FStar.Tactics.V2.Derived.name_of_bv",
"Prims.string"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string = | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bv_to_string (bv: bv) : Tac string | [] | FStar.Tactics.V2.Derived.bv_to_string | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | bv: FStar.Tactics.NamedView.bv -> FStar.Tactics.Effect.Tac Prims.string | {
"end_col": 17,
"end_line": 39,
"start_col": 4,
"start_line": 39
} |
FStar.Tactics.Effect.Tac | val trefl: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let trefl () : Tac unit =
t_trefl false | val trefl: Prims.unit -> Tac unit
let trefl () : Tac unit = | true | null | false | t_trefl false | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.t_trefl"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val trefl: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.trefl | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 15,
"end_line": 196,
"start_col": 2,
"start_line": 196
} |
FStar.Tactics.Effect.Tac | val qed: Prims.unit -> Tac unit | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!" | val qed: Prims.unit -> Tac unit
let qed () : Tac unit = | true | null | false | match goals () with
| [] -> ()
| _ -> fail "qed: not done!" | {
"checked_file": "FStar.Tactics.V2.Derived.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.SyntaxHelpers.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Types.fsti.checked",
"FStar.Tactics.Result.fsti.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Derived.fst"
} | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.Types.goal",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.V2.Derived.goals"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Derived
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Types
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.Result
open FStar.Tactics.Util
open FStar.Tactics.V2.SyntaxHelpers
open FStar.VConfig
open FStar.Tactics.NamedView
open FStar.Tactics.V2.SyntaxCoercions
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
unseal b.ppname
let binder_to_string (b : binder) : Tac string =
// TODO: print aqual, attributes..? or no?
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
let binding_to_string (b : binding) : Tac string =
unseal b.ppname
let type_of_var (x : namedv) : Tac typ =
unseal ((inspect_namedv x).sort)
let type_of_binding (x : binding) : Tot typ =
x.sort
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
let cur_vars () : Tac (list binding) =
vars_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *) | false | false | FStar.Tactics.V2.Derived.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qed: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Derived.qed | {
"file_name": "ulib/FStar.Tactics.V2.Derived.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 32,
"end_line": 148,
"start_col": 4,
"start_line": 146
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.