effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Tactics.Effect.Tac
val trefl_guard: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let trefl_guard () : Tac unit = t_trefl true
val trefl_guard: Prims.unit -> Tac unit let trefl_guard () : Tac unit =
true
null
false
t_trefl true
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Builtins.t_trefl" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val trefl_guard: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.trefl_guard
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 14, "end_line": 200, "start_col": 2, "start_line": 200 }
FStar.Tactics.Effect.Tac
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dump1 (m : string) = focus (fun () -> dump m)
let dump1 (m: string) =
true
null
false
focus (fun () -> dump m)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.focus", "Prims.unit", "FStar.Tactics.V2.Builtins.dump" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dump1 : m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V2.Derived.dump1
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 49, "end_line": 339, "start_col": 25, "start_line": 339 }
FStar.Tactics.Effect.Tac
val debug (m: string) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let debug (m:string) : Tac unit = if debugging () then print m
val debug (m: string) : Tac unit let debug (m: string) : Tac unit =
true
null
false
if debugging () then print m
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Builtins.print", "Prims.unit", "Prims.bool", "FStar.Tactics.V2.Builtins.debugging" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val debug (m: string) : Tac unit
[]
FStar.Tactics.V2.Derived.debug
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 32, "end_line": 154, "start_col": 4, "start_line": 154 }
FStar.Tactics.Effect.Tac
val smt_goals: Prims.unit -> Tac (list goal)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
val smt_goals: Prims.unit -> Tac (list goal) let smt_goals () : Tac (list goal) =
true
null
false
smt_goals_of (get ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.smt_goals_of", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Effect.get" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt_goals: Prims.unit -> Tac (list goal)
[]
FStar.Tactics.V2.Derived.smt_goals
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.Types.goal)
{ "end_col": 58, "end_line": 60, "start_col": 37, "start_line": 60 }
FStar.Tactics.Effect.Tac
val cur_goal: Prims.unit -> Tac typ
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_goal () : Tac typ = goal_type (_cur_goal ())
val cur_goal: Prims.unit -> Tac typ let cur_goal () : Tac typ =
true
null
false
goal_type (_cur_goal ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal_type", "FStar.Reflection.Types.typ", "FStar.Tactics.Types.goal", "FStar.Tactics.V2.Derived._cur_goal" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_goal: Prims.unit -> Tac typ
[]
FStar.Tactics.V2.Derived.cur_goal
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.typ
{ "end_col": 52, "end_line": 81, "start_col": 28, "start_line": 81 }
FStar.Tactics.Effect.Tac
val fresh_uvar (o: option typ) : Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o
val fresh_uvar (o: option typ) : Tac term let fresh_uvar (o: option typ) : Tac term =
true
null
false
let e = cur_env () in uvar_env e o
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "FStar.Tactics.V2.Builtins.uvar_env", "FStar.Reflection.Types.term", "FStar.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env", "FStar.Tactics.NamedView.term" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fresh_uvar (o: option typ) : Tac term
[]
FStar.Tactics.V2.Derived.fresh_uvar
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
o: FStar.Pervasives.Native.option FStar.Reflection.Types.typ -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 16, "end_line": 287, "start_col": 44, "start_line": 285 }
FStar.Tactics.Effect.Tac
val exact_guard (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t)
val exact_guard (t: term) : Tac unit let exact_guard (t: term) : Tac unit =
true
null
false
with_policy Goal (fun () -> t_exact true false t)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.with_policy", "Prims.unit", "FStar.Tactics.Types.Goal", "FStar.Tactics.V2.Builtins.t_exact" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val exact_guard (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.exact_guard
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 53, "end_line": 223, "start_col": 4, "start_line": 223 }
FStar.Tactics.Effect.Tac
val tmatch (t1 t2: term) : Tac bool
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2
val tmatch (t1 t2: term) : Tac bool let tmatch (t1 t2: term) : Tac bool =
true
null
false
let e = cur_env () in match_env e t1 t2
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.match_env", "Prims.bool", "FStar.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tmatch (t1 t2: term) : Tac bool
[]
FStar.Tactics.V2.Derived.tmatch
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.bool
{ "end_col": 21, "end_line": 299, "start_col": 38, "start_line": 297 }
FStar.Tactics.Effect.Tac
val cur_witness: Prims.unit -> Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_witness () : Tac term = goal_witness (_cur_goal ())
val cur_witness: Prims.unit -> Tac term let cur_witness () : Tac term =
true
null
false
goal_witness (_cur_goal ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal_witness", "FStar.Tactics.NamedView.term", "FStar.Tactics.Types.goal", "FStar.Tactics.V2.Derived._cur_goal" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_witness: Prims.unit -> Tac term
[]
FStar.Tactics.V2.Derived.cur_witness
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 59, "end_line": 84, "start_col": 32, "start_line": 84 }
FStar.Tactics.Effect.Tac
val apply_lemma_rw (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t
val apply_lemma_rw (t: term) : Tac unit let apply_lemma_rw (t: term) : Tac unit =
true
null
false
t_apply_lemma false true t
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.t_apply_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val apply_lemma_rw (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.apply_lemma_rw
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 30, "end_line": 212, "start_col": 4, "start_line": 212 }
FStar.Tactics.Effect.Tac
val apply_lemma (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t
val apply_lemma (t: term) : Tac unit let apply_lemma (t: term) : Tac unit =
true
null
false
t_apply_lemma false false t
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.t_apply_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val apply_lemma (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.apply_lemma
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 31, "end_line": 192, "start_col": 4, "start_line": 192 }
FStar.Tactics.Effect.Tac
val pointwise' (tau: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
val pointwise' (tau: (unit -> Tac unit)) : Tac unit let pointwise' (tau: (unit -> Tac unit)) : Tac unit =
true
null
false
t_pointwise TopDown tau
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.t_pointwise", "FStar.Tactics.Types.TopDown" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pointwise' (tau: (unit -> Tac unit)) : Tac unit
[]
FStar.Tactics.V2.Derived.pointwise'
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 77, "end_line": 277, "start_col": 53, "start_line": 277 }
FStar.Tactics.Effect.Tac
val pointwise (tau: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
val pointwise (tau: (unit -> Tac unit)) : Tac unit let pointwise (tau: (unit -> Tac unit)) : Tac unit =
true
null
false
t_pointwise BottomUp tau
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.t_pointwise", "FStar.Tactics.Types.BottomUp" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pointwise (tau: (unit -> Tac unit)) : Tac unit
[]
FStar.Tactics.V2.Derived.pointwise
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 77, "end_line": 276, "start_col": 53, "start_line": 276 }
FStar.Tactics.Effect.Tac
val exact (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t)
val exact (t: term) : Tac unit let exact (t: term) : Tac unit =
true
null
false
with_policy SMT (fun () -> t_exact true false t)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.with_policy", "Prims.unit", "FStar.Tactics.Types.SMT", "FStar.Tactics.V2.Builtins.t_exact" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val exact (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.exact
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 52, "end_line": 108, "start_col": 4, "start_line": 108 }
FStar.Tactics.Effect.Tac
val cur_module: Prims.unit -> Tac name
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_module () : Tac name = moduleof (top_env ())
val cur_module: Prims.unit -> Tac name let cur_module () : Tac name =
true
null
false
moduleof (top_env ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Reflection.V2.Builtins.moduleof", "FStar.Reflection.Types.name", "FStar.Reflection.Types.env", "FStar.Tactics.V2.Builtins.top_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_module: Prims.unit -> Tac name
[]
FStar.Tactics.V2.Derived.cur_module
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.name
{ "end_col": 25, "end_line": 280, "start_col": 4, "start_line": 280 }
FStar.Tactics.Effect.Tac
val binder_to_string (b: binder) : Tac string
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
val binder_to_string (b: binder) : Tac string let binder_to_string (b: binder) : Tac string =
true
null
false
name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")"
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.binder", "Prims.op_Hat", "Prims.string", "Prims.string_of_int", "FStar.Tactics.NamedView.__proj__Mkbinder__item__uniq", "FStar.Tactics.V2.Builtins.term_to_string", "FStar.Tactics.NamedView.__proj__Mkbinder__item__sort", "FStar.Tactics.V2.Derived.name_of_binder" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string =
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binder_to_string (b: binder) : Tac string
[]
FStar.Tactics.V2.Derived.binder_to_string
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Tactics.NamedView.binder -> FStar.Tactics.Effect.Tac Prims.string
{ "end_col": 86, "end_line": 46, "start_col": 2, "start_line": 46 }
FStar.Tactics.Effect.Tac
val cur_vars: Prims.unit -> Tac (list binding)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_vars () : Tac (list binding) = vars_of_env (cur_env ())
val cur_vars: Prims.unit -> Tac (list binding) let cur_vars () : Tac (list binding) =
true
null
false
vars_of_env (cur_env ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Reflection.V2.Builtins.vars_of_env", "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_vars: Prims.unit -> Tac (list binding)
[]
FStar.Tactics.V2.Derived.cur_vars
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
{ "end_col": 28, "end_line": 95, "start_col": 4, "start_line": 95 }
FStar.Tactics.Effect.Tac
val later: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals"
val later: Prims.unit -> Tac unit let later () : Tac unit =
true
null
false
match goals () with | g :: gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals"
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_goals", "FStar.Tactics.V2.Derived.op_At", "Prims.Cons", "Prims.Nil", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val later: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.later
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 33, "end_line": 175, "start_col": 4, "start_line": 173 }
FStar.Tactics.Effect.Tac
val iterAllSMT (t: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs')
val iterAllSMT (t: (unit -> Tac unit)) : Tac unit let iterAllSMT (t: (unit -> Tac unit)) : Tac unit =
true
null
false
let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs' @ sgs')
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Tactics.V2.Builtins.set_smt_goals", "FStar.Tactics.V2.Derived.op_At", "FStar.Tactics.V2.Builtins.set_goals", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.V2.Derived.smt_goals", "FStar.Tactics.V2.Derived.goals", "FStar.Tactics.V2.Derived.iterAll", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val iterAllSMT (t: (unit -> Tac unit)) : Tac unit
[]
FStar.Tactics.V2.Derived.iterAllSMT
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 28, "end_line": 359, "start_col": 50, "start_line": 352 }
FStar.Tactics.Effect.Tac
val trivial: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial
val trivial: Prims.unit -> Tac unit let trivial () : Tac unit =
true
null
false
norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.exact", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.Effect.raise", "FStar.Tactics.V2.Derived.Goal_not_trivial", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Reflection.Types.typ", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.reify_", "FStar.Pervasives.delta", "FStar.Pervasives.primops", "FStar.Pervasives.simplify", "FStar.Pervasives.unmeta", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val trivial: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.trivial
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 31, "end_line": 121, "start_col": 2, "start_line": 117 }
FStar.Tactics.Effect.Tac
val t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw
val t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit let t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit =
true
null
false
let ctrl (t: term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.Types.direction", "Prims.unit", "FStar.Tactics.V2.Builtins.ctrl_rewrite", "FStar.Tactics.NamedView.term", "FStar.Pervasives.Native.tuple2", "Prims.bool", "FStar.Tactics.Types.ctrl_flag", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.Types.Continue" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit
[]
FStar.Tactics.V2.Derived.t_pointwise
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
d: FStar.Tactics.Types.direction -> tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 24, "end_line": 239, "start_col": 67, "start_line": 232 }
FStar.Tactics.Effect.Tac
val exact_args (qs: list aqualv) (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) )
val exact_args (qs: list aqualv) (t: term) : Tac unit let exact_args (qs: list aqualv) (t: term) : Tac unit =
true
null
false
focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv) (L.rev uvs))
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Reflection.V2.Data.aqualv", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.focus", "Prims.unit", "FStar.Tactics.Util.iter", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.is_uvar", "FStar.Tactics.V2.Builtins.unshelve", "Prims.bool", "FStar.List.Tot.Base.rev", "FStar.Tactics.V2.Derived.exact", "FStar.Reflection.V2.Derived.mk_app", "FStar.Reflection.V2.Data.argv", "FStar.Tactics.Util.zip", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.Util.repeatn", "FStar.Tactics.V2.Derived.fresh_uvar", "FStar.Pervasives.Native.None", "FStar.Reflection.Types.typ", "Prims.nat", "FStar.List.Tot.Base.length" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val exact_args (qs: list aqualv) (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.exact_args
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
qs: Prims.list FStar.Reflection.V2.Data.aqualv -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 5, "end_line": 376, "start_col": 4, "start_line": 368 }
FStar.Tactics.Effect.Tac
val seq (f g: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g)
val seq (f g: (unit -> Tac unit)) : Tac unit let seq (f g: (unit -> Tac unit)) : Tac unit =
true
null
false
focus (fun () -> f (); iterAll g)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.focus", "FStar.Tactics.V2.Derived.iterAll" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq (f g: (unit -> Tac unit)) : Tac unit
[]
FStar.Tactics.V2.Derived.seq
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> g: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 37, "end_line": 365, "start_col": 4, "start_line": 365 }
FStar.Tactics.Effect.Tac
val exact_n (n: int) (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t
val exact_n (n: int) (t: term) : Tac unit let exact_n (n: int) (t: term) : Tac unit =
true
null
false
exact_args (repeatn n (fun () -> Q_Explicit)) t
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.int", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.exact_args", "Prims.unit", "Prims.list", "FStar.Reflection.V2.Data.aqualv", "FStar.Tactics.Util.repeatn", "FStar.Reflection.V2.Data.Q_Explicit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) )
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val exact_n (n: int) (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.exact_n
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.int -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 51, "end_line": 379, "start_col": 4, "start_line": 379 }
FStar.Tactics.Effect.Tac
val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let (<|>) t1 t2 = fun () -> or_else t1 t2
val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let op_Less_Bar_Greater t1 t2 =
true
null
false
fun () -> or_else t1 t2
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.or_else" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) ->
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a)
[]
FStar.Tactics.V2.Derived.op_Less_Bar_Greater
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> t2: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> _: Prims.unit -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 41, "end_line": 463, "start_col": 18, "start_line": 463 }
FStar.Tactics.Effect.Tac
val norm_term (s: list norm_step) (t: term) : Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t
val norm_term (s: list norm_step) (t: term) : Tac term let norm_term (s: list norm_step) (t: term) : Tac term =
true
null
false
let e = try cur_env () with | _ -> top_env () in norm_term_env e s t
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Pervasives.norm_step", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.norm_term_env", "FStar.Reflection.Types.term", "FStar.Reflection.Types.env", "FStar.Tactics.V2.Derived.try_with", "Prims.unit", "FStar.Tactics.V2.Derived.cur_env", "Prims.exn", "FStar.Tactics.V2.Builtins.top_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val norm_term (s: list norm_step) (t: term) : Tac term
[]
FStar.Tactics.V2.Derived.norm_term
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.list FStar.Pervasives.norm_step -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 23, "end_line": 484, "start_col": 58, "start_line": 479 }
FStar.Tactics.Effect.Tac
val admit1: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let admit1 () : Tac unit = tadmit ()
val admit1: Prims.unit -> Tac unit let admit1 () : Tac unit =
true
null
false
tadmit ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.tadmit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val admit1: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.admit1
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 13, "end_line": 509, "start_col": 4, "start_line": 509 }
FStar.Tactics.Effect.Tac
val namedv_to_simple_binder (n: namedv) : Tac simple_binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let namedv_to_simple_binder (n : namedv) : Tac simple_binder = let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; (* GGG USINGSORT *) qual = Q_Explicit; attrs = []; }
val namedv_to_simple_binder (n: namedv) : Tac simple_binder let namedv_to_simple_binder (n: namedv) : Tac simple_binder =
true
null
false
let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; qual = Q_Explicit; attrs = [] }
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.namedv", "FStar.Tactics.NamedView.Mkbinder", "FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__uniq", "FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__ppname", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.simple_binder", "FStar.Reflection.Types.typ", "FStar.Tactics.Unseal.unseal", "FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__sort", "FStar.Tactics.NamedView.inspect_namedv" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *) let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t')
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val namedv_to_simple_binder (n: namedv) : Tac simple_binder
[]
FStar.Tactics.V2.Derived.namedv_to_simple_binder
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: FStar.Tactics.NamedView.namedv -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.simple_binder
{ "end_col": 3, "end_line": 890, "start_col": 62, "start_line": 882 }
FStar.Tactics.Effect.Tac
val __assumption_aux (xs: list binding) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs
val __assumption_aux (xs: list binding) : Tac unit let rec __assumption_aux (xs: list binding) : Tac unit =
true
null
false
match xs with | [] -> fail "no assumption matches goal" | b :: bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.fail", "Prims.unit", "FStar.Tactics.V2.Derived.try_with", "FStar.Tactics.V2.Derived.exact", "FStar.Tactics.V2.SyntaxCoercions.binding_to_term", "Prims.exn", "FStar.Tactics.V2.Derived.apply", "FStar.Tactics.V2.Derived.__assumption_aux" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __assumption_aux (xs: list binding) : Tac unit
[ "recursion" ]
FStar.Tactics.V2.Derived.__assumption_aux
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
xs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 27, "end_line": 582, "start_col": 4, "start_line": 575 }
FStar.Tactics.Effect.Tac
val first (ts: list (unit -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
val first (ts: list (unit -> Tac 'a)) : Tac 'a let first (ts: list (unit -> Tac 'a)) : Tac 'a =
true
null
false
L.fold_right ( <|> ) ts (fun () -> fail "no tactics to try") ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "Prims.unit", "FStar.List.Tot.Base.fold_right", "FStar.Tactics.V2.Derived.op_Less_Bar_Greater", "FStar.Tactics.V2.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val first (ts: list (unit -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V2.Derived.first
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 65, "end_line": 466, "start_col": 4, "start_line": 466 }
FStar.Tactics.Effect.Tac
val fresh_namedv: Prims.unit -> Tac namedv
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; })
val fresh_namedv: Prims.unit -> Tac namedv let fresh_namedv () : Tac namedv =
true
null
false
let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n })
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.NamedView.pack_namedv", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Sealed.seal", "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Unknown", "Prims.string", "Prims.op_Hat", "Prims.string_of_int", "FStar.Tactics.NamedView.namedv", "Prims.nat", "FStar.Tactics.V2.Builtins.fresh" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fresh_namedv: Prims.unit -> Tac namedv
[]
FStar.Tactics.V2.Derived.fresh_namedv
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.namedv
{ "end_col": 4, "end_line": 404, "start_col": 34, "start_line": 398 }
FStar.Tactics.Effect.Tac
val repeat' (f: (unit -> Tac 'a)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in ()
val repeat' (f: (unit -> Tac 'a)) : Tac unit let repeat' (f: (unit -> Tac 'a)) : Tac unit =
true
null
false
let _ = repeat f in ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.V2.Derived.repeat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repeat' (f: (unit -> Tac 'a)) : Tac unit
[]
FStar.Tactics.V2.Derived.repeat'
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 26, "end_line": 477, "start_col": 45, "start_line": 476 }
FStar.Tactics.Effect.Tac
val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 ()
val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a let or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a =
true
null
false
try t1 () with | _ -> t2 ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.try_with", "Prims.exn" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a
[]
FStar.Tactics.V2.Derived.or_else
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> t2: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac a
{ "end_col": 21, "end_line": 458, "start_col": 4, "start_line": 457 }
FStar.Tactics.Effect.Tac
val compute: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compute () : Tac unit = norm [primops; iota; delta; zeta]
val compute: Prims.unit -> Tac unit let compute () : Tac unit =
true
null
false
norm [primops; iota; delta; zeta]
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.primops", "FStar.Pervasives.iota", "FStar.Pervasives.delta", "FStar.Pervasives.zeta", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops]
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compute: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.compute
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 61, "end_line": 530, "start_col": 28, "start_line": 530 }
FStar.Tactics.Effect.Tac
val intros': Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intros' () : Tac unit = let _ = intros () in ()
val intros': Prims.unit -> Tac unit let intros' () : Tac unit =
true
null
false
let _ = intros () in ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.intros" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intros': Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.intros'
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 51, "end_line": 534, "start_col": 27, "start_line": 534 }
FStar.Tactics.Effect.Tac
val tcut (t: term) : Tac binding
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro ()
val tcut (t: term) : Tac binding let tcut (t: term) : Tac binding =
true
null
false
let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.intro", "FStar.Reflection.V2.Data.binding", "Prims.unit", "FStar.Tactics.V2.Derived.apply", "FStar.Tactics.NamedView.binding", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.mk_e_app", "Prims.Cons", "Prims.Nil", "FStar.Reflection.Types.typ", "FStar.Tactics.V2.Derived.cur_goal" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tcut (t: term) : Tac binding
[]
FStar.Tactics.V2.Derived.tcut
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 12, "end_line": 545, "start_col": 33, "start_line": 541 }
FStar.Tactics.Effect.Tac
val pose (t: term) : Tac binding
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro ()
val pose (t: term) : Tac binding let pose (t: term) : Tac binding =
true
null
false
apply (`__cut); flip (); exact t; intro ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.intro", "FStar.Reflection.V2.Data.binding", "Prims.unit", "FStar.Tactics.V2.Derived.exact", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.flip", "FStar.Tactics.V2.Derived.apply" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pose (t: term) : Tac binding
[]
FStar.Tactics.V2.Derived.pose
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 12, "end_line": 551, "start_col": 4, "start_line": 548 }
FStar.Tactics.Effect.Tac
val admit_all: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let admit_all () : Tac unit = let _ = repeat tadmit in ()
val admit_all: Prims.unit -> Tac unit let admit_all () : Tac unit =
true
null
false
let _ = repeat tadmit in ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.V2.Derived.tadmit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val admit_all: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.admit_all
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 6, "end_line": 513, "start_col": 29, "start_line": 511 }
FStar.Tactics.Effect.Tac
val skip_guard: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let skip_guard () : Tac unit = if is_guard () then smt () else fail ""
val skip_guard: Prims.unit -> Tac unit let skip_guard () : Tac unit =
true
null
false
if is_guard () then smt () else fail ""
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.smt", "Prims.bool", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.V2.Derived.is_guard" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val skip_guard: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.skip_guard
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 16, "end_line": 522, "start_col": 4, "start_line": 520 }
FStar.Tactics.Effect.Tac
val intros: Prims.unit -> Tac (list binding)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intros () : Tac (list binding) = repeat intro
val intros: Prims.unit -> Tac (list binding) let intros () : Tac (list binding) =
true
null
false
repeat intro
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Builtins.intro", "Prims.list" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta]
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intros: Prims.unit -> Tac (list binding)
[]
FStar.Tactics.V2.Derived.intros
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
{ "end_col": 49, "end_line": 532, "start_col": 37, "start_line": 532 }
FStar.Tactics.Effect.Tac
val revert_all (bs: list binding) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl
val revert_all (bs: list binding) : Tac unit let rec revert_all (bs: list binding) : Tac unit =
true
null
false
match bs with | [] -> () | _ :: tl -> revert (); revert_all tl
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Derived.revert_all", "FStar.Tactics.V2.Builtins.revert" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val revert_all (bs: list binding) : Tac unit
[ "recursion" ]
FStar.Tactics.V2.Derived.revert_all
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 26, "end_line": 568, "start_col": 4, "start_line": 565 }
FStar.Tactics.Effect.Tac
val pose_as (s: string) (t: term) : Tac binding
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s
val pose_as (s: string) (t: term) : Tac binding let pose_as (s: string) (t: term) : Tac binding =
true
null
false
let b = pose t in rename_to b s
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.rename_to", "FStar.Reflection.V2.Data.binding", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.pose" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pose_as (s: string) (t: term) : Tac binding
[]
FStar.Tactics.V2.Derived.pose_as
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.string -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 17, "end_line": 559, "start_col": 47, "start_line": 557 }
FStar.Tactics.Effect.Tac
val for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ())
val for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a) let for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a) =
true
null
false
map f (cur_vars ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.binding", "FStar.Tactics.Util.map", "Prims.list", "FStar.Tactics.V2.Derived.cur_vars" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val for_each_binding (f: (binding -> Tac 'a)) : Tac (list 'a)
[]
FStar.Tactics.V2.Derived.for_each_binding
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac (Prims.list 'a)
{ "end_col": 23, "end_line": 562, "start_col": 4, "start_line": 562 }
Prims.Tot
val binder_sort (b: binder) : Tot typ
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binder_sort (b : binder) : Tot typ = b.sort
val binder_sort (b: binder) : Tot typ let binder_sort (b: binder) : Tot typ =
false
null
false
b.sort
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "total" ]
[ "FStar.Tactics.NamedView.binder", "FStar.Tactics.NamedView.__proj__Mkbinder__item__sort", "FStar.Reflection.Types.typ" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl
false
true
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binder_sort (b: binder) : Tot typ
[]
FStar.Tactics.V2.Derived.binder_sort
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Tactics.NamedView.binder -> FStar.Reflection.Types.typ
{ "end_col": 47, "end_line": 570, "start_col": 41, "start_line": 570 }
FStar.Tactics.Effect.Tac
val bump_nth (n: pos) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t)
val bump_nth (n: pos) : Tac unit let bump_nth (n: pos) : Tac unit =
true
null
false
match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.pos", "FStar.Tactics.V2.Derived.fail", "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_goals", "Prims.Cons", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Derived.extract_nth", "Prims.op_Subtraction", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit =
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bump_nth (n: pos) : Tac unit
[]
FStar.Tactics.V2.Derived.bump_nth
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.pos -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 37, "end_line": 799, "start_col": 2, "start_line": 797 }
FStar.Tactics.Effect.Tac
val rewrite' (x: binding) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) ()
val rewrite' (x: binding) : Tac unit let rewrite' (x: binding) : Tac unit =
true
null
false
((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.op_Less_Bar_Greater", "Prims.unit", "FStar.Tactics.V2.Builtins.rewrite", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Tactics.V2.Builtins.var_retype", "FStar.Tactics.V2.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite' (x: binding) : Tac unit
[]
FStar.Tactics.V2.Derived.rewrite'
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 6, "end_line": 608, "start_col": 4, "start_line": 603 }
FStar.Tactics.Effect.Tac
val _cur_goal: Prims.unit -> Tac goal
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g
val _cur_goal: Prims.unit -> Tac goal let _cur_goal () : Tac goal =
true
null
false
match goals () with | [] -> fail "no more goals" | g :: _ -> g
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val _cur_goal: Prims.unit -> Tac goal
[]
FStar.Tactics.V2.Derived._cur_goal
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.Types.goal
{ "end_col": 15, "end_line": 75, "start_col": 4, "start_line": 73 }
FStar.Tactics.Effect.Tac
val dismiss: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs
val dismiss: Prims.unit -> Tac unit let dismiss () : Tac unit =
true
null
false
match goals () with | [] -> fail "dismiss: no more goals" | _ :: gs -> set_goals gs
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_goals", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dismiss: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.dismiss
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 27, "end_line": 135, "start_col": 4, "start_line": 133 }
FStar.Pervasives.Lemma
val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a)
val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a)) let __eq_sym #t (a: t) (b: t) : Lemma ((a == b) == (b == a)) =
false
null
true
FStar.PropositionalExtensionality.apply (a == b) (b == a)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "lemma" ]
[ "FStar.PropositionalExtensionality.apply", "Prims.eq2", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.logical", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a))
[]
FStar.Tactics.V2.Derived.__eq_sym
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: t -> b: t -> FStar.Pervasives.Lemma (ensures a == b == (b == a))
{ "end_col": 55, "end_line": 599, "start_col": 2, "start_line": 599 }
FStar.Tactics.Effect.Tac
val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x
val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a let try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a =
true
null
false
match catch f with | Inl e -> h e | Inr x -> x
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.exn", "FStar.Pervasives.either", "FStar.Tactics.V2.Builtins.catch" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V2.Derived.try_with
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> h: (_: Prims.exn -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 16, "end_line": 449, "start_col": 4, "start_line": 447 }
FStar.Tactics.Effect.Tac
val mk_abs (args: list binder) (t: term) : Tac term (decreases args)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t')
val mk_abs (args: list binder) (t: term) : Tac term (decreases args) let rec mk_abs (args: list binder) (t: term) : Tac term (decreases args) =
true
null
false
match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t')
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "" ]
[ "Prims.list", "FStar.Tactics.NamedView.binder", "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Abs", "FStar.Tactics.V2.Derived.mk_abs" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_abs (args: list binder) (t: term) : Tac term (decreases args)
[ "recursion" ]
FStar.Tactics.V2.Derived.mk_abs
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
args: Prims.list FStar.Tactics.NamedView.binder -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 22, "end_line": 879, "start_col": 2, "start_line": 875 }
FStar.Tactics.Effect.Tac
val nth_var (i: int) : Tac binding
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b
val nth_var (i: int) : Tac binding let nth_var (i: int) : Tac binding =
true
null
false
let bs = cur_vars () in let k:int = if i >= 0 then i else List.Tot.Base.length bs + i in let k:nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.int", "FStar.List.Tot.Base.nth", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.fail", "Prims.nat", "Prims.op_LessThan", "Prims.bool", "Prims.op_GreaterThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Prims.list", "FStar.Tactics.V2.Derived.cur_vars" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nth_var (i: int) : Tac binding
[]
FStar.Tactics.V2.Derived.nth_var
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: Prims.int -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 15, "end_line": 854, "start_col": 35, "start_line": 848 }
FStar.Tactics.Effect.Tac
val rewrite_eqs_from_context: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ())
val rewrite_eqs_from_context: Prims.unit -> Tac unit let rewrite_eqs_from_context () : Tac unit =
true
null
false
rewrite_all_context_equalities (cur_vars ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.rewrite_all_context_equalities", "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.cur_vars" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_eqs_from_context: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.rewrite_eqs_from_context
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 48, "end_line": 632, "start_col": 4, "start_line": 632 }
Prims.Tot
val mk_sq_eq (t1 t2: term) : Tot term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2])
val mk_sq_eq (t1 t2: term) : Tot term let mk_sq_eq (t1 t2: term) : Tot term =
false
null
false
let eq:term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2])
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "total" ]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.mk_squash", "FStar.Reflection.V2.Derived.mk_e_app", "Prims.Cons", "FStar.Reflection.Types.term", "Prims.Nil", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_FVar", "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.eq2_qn" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t]
false
true
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_sq_eq (t1 t2: term) : Tot term
[]
FStar.Tactics.V2.Derived.mk_sq_eq
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term -> FStar.Tactics.NamedView.term
{ "end_col": 36, "end_line": 661, "start_col": 40, "start_line": 659 }
FStar.Tactics.Effect.Tac
val magic_dump_t: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); ()
val magic_dump_t: Prims.unit -> Tac unit let magic_dump_t () : Tac unit =
true
null
false
dump "Admitting"; apply (`magic); exact (`()); ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.exact", "FStar.Tactics.V2.Derived.apply", "FStar.Tactics.V2.Builtins.dump" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val magic_dump_t: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.magic_dump_t
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 4, "end_line": 714, "start_col": 2, "start_line": 711 }
FStar.Tactics.Effect.Tac
val finish_by (t: (unit -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x
val finish_by (t: (unit -> Tac 'a)) : Tac 'a let finish_by (t: (unit -> Tac 'a)) : Tac 'a =
true
null
false
let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.or_else", "FStar.Tactics.V2.Derived.qed", "FStar.Tactics.V2.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1])
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finish_by (t: (unit -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V2.Derived.finish_by
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 5, "end_line": 731, "start_col": 45, "start_line": 728 }
Prims.Admit
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let admit_dump #a #x () = x ()
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () =
true
null
false
x ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
[]
FStar.Tactics.V2.Derived.admit_dump
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> Prims.Admit a
{ "end_col": 30, "end_line": 707, "start_col": 26, "start_line": 707 }
FStar.Tactics.Effect.Tac
val rewrite_equality (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ())
val rewrite_equality (t: term) : Tac unit let rewrite_equality (t: term) : Tac unit =
true
null
false
try_rewrite_equality t (cur_vars ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.try_rewrite_equality", "Prims.unit", "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.cur_vars" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_equality (t: term) : Tac unit
[]
FStar.Tactics.V2.Derived.rewrite_equality
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 40, "end_line": 635, "start_col": 4, "start_line": 635 }
FStar.Tactics.Effect.Tac
val change_sq (t1: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1])
val change_sq (t1: term) : Tac unit let change_sq (t1: term) : Tac unit =
true
null
false
change (mk_e_app (`squash) [t1])
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Builtins.change", "FStar.Reflection.V2.Derived.mk_e_app", "Prims.Cons", "FStar.Reflection.Types.term", "Prims.Nil", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] )
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val change_sq (t1: term) : Tac unit
[]
FStar.Tactics.V2.Derived.change_sq
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 36, "end_line": 726, "start_col": 4, "start_line": 726 }
FStar.Tactics.Effect.Tac
val iseq (ts: list (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> ()
val iseq (ts: list (unit -> Tac unit)) : Tac unit let rec iseq (ts: list (unit -> Tac unit)) : Tac unit =
true
null
false
match ts with | t :: ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Derived.divide", "FStar.Tactics.V2.Derived.iseq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val iseq (ts: list (unit -> Tac unit)) : Tac unit
[ "recursion" ]
FStar.Tactics.V2.Derived.iseq
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 17, "end_line": 324, "start_col": 4, "start_line": 322 }
FStar.Tactics.Effect.Tac
val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y
val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b let solve_then #a #b (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b =
true
null
false
dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.trefl", "FStar.Tactics.V2.Derived.focus", "FStar.Tactics.V2.Derived.finish_by", "FStar.Tactics.V2.Builtins.dup" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b
[]
FStar.Tactics.V2.Derived.solve_then
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> t2: (_: a -> FStar.Tactics.Effect.Tac b) -> FStar.Tactics.Effect.Tac b
{ "end_col": 5, "end_line": 738, "start_col": 4, "start_line": 734 }
FStar.Tactics.Effect.Tac
val grewrite (t1 t2: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ())
val grewrite (t1 t2: term) : Tac unit let grewrite (t1 t2: term) : Tac unit =
true
null
false
let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> let is_uvar = match term_as_formula (cur_goal ()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.pointwise", "Prims.unit", "FStar.Tactics.V2.Derived.trefl", "Prims.bool", "FStar.Tactics.V2.Derived.try_with", "FStar.Tactics.V2.Derived.exact", "Prims.exn", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "Prims.nat", "FStar.Reflection.Types.ctx_uvar_and_subst", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.inspect", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Var", "FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.tcut", "FStar.Tactics.V2.Derived.mk_sq_eq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2].
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val grewrite (t1 t2: term) : Tac unit
[]
FStar.Tactics.V2.Derived.grewrite
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Tactics.NamedView.term -> t2: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 44, "end_line": 680, "start_col": 40, "start_line": 665 }
FStar.Tactics.Effect.Tac
val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit let specialize (#a: Type) (f: a) (l: list string) : unit -> Tac unit =
true
null
false
fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "Prims.string", "Prims.unit", "FStar.Tactics.V2.Derived.solve_then", "FStar.Tactics.V2.Derived.exact", "FStar.Tactics.NamedView.term", "FStar.Reflection.Types.term", "FStar.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit
[]
FStar.Tactics.V2.Derived.specialize
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: a -> l: Prims.list Prims.string -> _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 96, "end_line": 765, "start_col": 4, "start_line": 765 }
FStar.Tactics.Effect.TacH
val cur_goal_safe: Prims.unit -> TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g
val cur_goal_safe: Prims.unit -> TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) =
true
null
false
match goals_of (get ()) with | g :: _ -> g
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.Types.goals_of", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Effect.get", "Prims.l_not", "Prims.eq2", "Prims.Nil", "FStar.Tactics.Result.__result", "Prims.l_Exists", "FStar.Tactics.Result.Success" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_goal_safe: Prims.unit -> TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0))
[]
FStar.Tactics.V2.Derived.cur_goal_safe
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.TacH FStar.Tactics.Types.goal
{ "end_col": 16, "end_line": 92, "start_col": 3, "start_line": 91 }
FStar.Tactics.Effect.Tac
val grewrite_eq (b: binding) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end
val grewrite_eq (b: binding) : Tac unit let grewrite_eq (b: binding) : Tac unit =
true
null
false
match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [ idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b) ] | _ -> fail "grewrite_eq: binder type is not an equality"
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.binding", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.iseq", "Prims.Cons", "Prims.unit", "FStar.Tactics.V2.Derived.idtac", "FStar.Tactics.V2.Derived.exact", "FStar.Tactics.V2.SyntaxCoercions.binding_to_term", "Prims.Nil", "FStar.Tactics.V2.Derived.grewrite", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Tactics.V2.Derived.fail", "FStar.Reflection.V2.Formula.term_as_formula'", "FStar.Tactics.V2.Derived.type_of_binding", "FStar.Reflection.V2.Formula.term_as_formula" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val grewrite_eq (b: binding) : Tac unit
[]
FStar.Tactics.V2.Derived.grewrite_eq
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 7, "end_line": 699, "start_col": 2, "start_line": 687 }
Prims.Tot
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let magic_dump #a #x () = x
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () =
false
null
false
x
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "total" ]
[ "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
[]
FStar.Tactics.V2.Derived.magic_dump
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> a
{ "end_col": 27, "end_line": 717, "start_col": 26, "start_line": 717 }
FStar.Tactics.Effect.Tac
val trans: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let trans () : Tac unit = apply_lemma (`lem_trans)
val trans: Prims.unit -> Tac unit let trans () : Tac unit =
true
null
false
apply_lemma (`lem_trans)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *) let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t') // GGG Needed? delete if not let namedv_to_simple_binder (n : namedv) : Tac simple_binder = let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; (* GGG USINGSORT *) qual = Q_Explicit; attrs = []; } [@@coercion] let binding_to_simple_binder (b : binding) : Tot simple_binder = { ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = []; } (** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses [s] as a term in environment [e] augmented with bindings [id1, t1], ..., [idn, tn]. *) let string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string): Tac term = let e, lb_bindings : env * list (term & binding) = fold_left (fun (e, lb_bvs) (i, v) -> let e, b = push_bv_dsenv e i in e, (v, b)::lb_bvs ) (e, []) letbindings in let t = string_to_term e t in fold_left (fun t (i, b) -> pack (Tv_Let false [] (binding_to_simple_binder b) i t)) t lb_bindings private val lem_trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let lem_trans #a #x #z #y e1 e2 = ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val trans: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.trans
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 50, "end_line": 925, "start_col": 26, "start_line": 925 }
FStar.Tactics.Effect.Tac
val smt_sync: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt_sync () : Tac unit = t_smt_sync (get_vconfig ())
val smt_sync: Prims.unit -> Tac unit let smt_sync () : Tac unit =
true
null
false
t_smt_sync (get_vconfig ())
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Builtins.t_smt_sync", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *) let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t') // GGG Needed? delete if not let namedv_to_simple_binder (n : namedv) : Tac simple_binder = let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; (* GGG USINGSORT *) qual = Q_Explicit; attrs = []; } [@@coercion] let binding_to_simple_binder (b : binding) : Tot simple_binder = { ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = []; } (** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses [s] as a term in environment [e] augmented with bindings [id1, t1], ..., [idn, tn]. *) let string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string): Tac term = let e, lb_bindings : env * list (term & binding) = fold_left (fun (e, lb_bvs) (i, v) -> let e, b = push_bv_dsenv e i in e, (v, b)::lb_bvs ) (e, []) letbindings in let t = string_to_term e t in fold_left (fun t (i, b) -> pack (Tv_Let false [] (binding_to_simple_binder b) i t)) t lb_bindings private val lem_trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let lem_trans #a #x #z #y e1 e2 = () (** Transivity of equality: reduce [x == z] to [x == ?u] and [?u == z]. *) let trans () : Tac unit = apply_lemma (`lem_trans)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt_sync: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.smt_sync
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 56, "end_line": 928, "start_col": 29, "start_line": 928 }
FStar.Tactics.Effect.Tac
val branch_on_match: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) )
val branch_on_match: Prims.unit -> Tac unit let branch_on_match () : Tac unit =
true
null
false
focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in grewrite_eq b; norm [iota]))
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.focus", "FStar.Tactics.V2.Derived.iterAll", "FStar.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.iota", "Prims.Nil", "FStar.Tactics.V2.Derived.grewrite_eq", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.last", "Prims.list", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.V2.Builtins.intro", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.Types.fv", "Prims.nat", "FStar.Tactics.V2.Builtins.t_destruct", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.get_match_body" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val branch_on_match: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.branch_on_match
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 5, "end_line": 841, "start_col": 4, "start_line": 833 }
FStar.Tactics.Effect.Tac
val smt: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end
val smt: Prims.unit -> Tac unit let smt () : Tac unit =
true
null
false
match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g :: gs, gs' -> set_goals gs; set_smt_goals (g :: gs')
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.V2.Builtins.set_smt_goals", "Prims.Cons", "FStar.Tactics.V2.Builtins.set_goals", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.V2.Derived.smt_goals", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.smt
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 11, "end_line": 167, "start_col": 4, "start_line": 161 }
FStar.Tactics.Effect.Tac
val name_appears_in (nm: name) (t: term) : Tac bool
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e
val name_appears_in (nm: name) (t: term) : Tac bool let name_appears_in (nm: name) (t: term) : Tac bool =
true
null
false
let ff (t: term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try (ignore (V.visit_tm ff t); false) with | Appears -> true | e -> raise e
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Reflection.Types.name", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.try_with", "Prims.bool", "Prims.unit", "FStar.Pervasives.ignore", "FStar.Reflection.Types.term", "FStar.Tactics.Visit.visit_tm", "Prims.exn", "FStar.Tactics.Effect.raise", "FStar.Reflection.Types.fv", "Prims.op_Equality", "FStar.Reflection.V2.Builtins.inspect_fv", "FStar.Tactics.V2.Derived.Appears", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.inspect" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val name_appears_in (nm: name) (t: term) : Tac bool
[]
FStar.Tactics.V2.Derived.name_appears_in
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
nm: FStar.Reflection.Types.name -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.bool
{ "end_col": 16, "end_line": 871, "start_col": 51, "start_line": 860 }
FStar.Tactics.Effect.TAC
val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m)
val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) let fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) =
true
null
false
raise #a (TacticFailure m)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.Effect.raise", "FStar.Tactics.Common.TacticFailure", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Result.__result", "FStar.Tactics.Result.Failed" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
[]
FStar.Tactics.V2.Derived.fail
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.TAC a
{ "end_col": 30, "end_line": 64, "start_col": 4, "start_line": 64 }
FStar.Tactics.Effect.Tac
val smt_sync' (fuel ifuel: nat) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg'
val smt_sync' (fuel ifuel: nat) : Tac unit let smt_sync' (fuel ifuel: nat) : Tac unit =
true
null
false
let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg'
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.nat", "FStar.Tactics.V2.Builtins.t_smt_sync", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *) let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t') // GGG Needed? delete if not let namedv_to_simple_binder (n : namedv) : Tac simple_binder = let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; (* GGG USINGSORT *) qual = Q_Explicit; attrs = []; } [@@coercion] let binding_to_simple_binder (b : binding) : Tot simple_binder = { ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = []; } (** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses [s] as a term in environment [e] augmented with bindings [id1, t1], ..., [idn, tn]. *) let string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string): Tac term = let e, lb_bindings : env * list (term & binding) = fold_left (fun (e, lb_bvs) (i, v) -> let e, b = push_bv_dsenv e i in e, (v, b)::lb_bvs ) (e, []) letbindings in let t = string_to_term e t in fold_left (fun t (i, b) -> pack (Tv_Let false [] (binding_to_simple_binder b) i t)) t lb_bindings private val lem_trans : (#a:Type) -> (#x:a) -> (#z:a) -> (#y:a) -> squash (x == y) -> squash (y == z) -> Lemma (x == z) private let lem_trans #a #x #z #y e1 e2 = () (** Transivity of equality: reduce [x == z] to [x == ?u] and [?u == z]. *) let trans () : Tac unit = apply_lemma (`lem_trans) (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt_sync' (fuel ifuel: nat) : Tac unit
[]
FStar.Tactics.V2.Derived.smt_sync'
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
fuel: Prims.nat -> ifuel: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 20, "end_line": 936, "start_col": 45, "start_line": 931 }
FStar.Tactics.Effect.Tac
val string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string): Tac term = let e, lb_bindings : env * list (term & binding) = fold_left (fun (e, lb_bvs) (i, v) -> let e, b = push_bv_dsenv e i in e, (v, b)::lb_bvs ) (e, []) letbindings in let t = string_to_term e t in fold_left (fun t (i, b) -> pack (Tv_Let false [] (binding_to_simple_binder b) i t)) t lb_bindings
val string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term let string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term =
true
null
false
let e, lb_bindings:env * list (term & binding) = fold_left (fun (e, lb_bvs) (i, v) -> let e, b = push_bv_dsenv e i in e, (v, b) :: lb_bvs) (e, []) letbindings in let t = string_to_term e t in fold_left (fun t (i, b) -> pack (Tv_Let false [] (binding_to_simple_binder b) i t)) t lb_bindings
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.string", "FStar.Tactics.NamedView.term", "FStar.Reflection.Types.env", "FStar.Tactics.NamedView.binding", "FStar.Tactics.Util.fold_left", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Let", "Prims.Nil", "FStar.Tactics.V2.Derived.binding_to_simple_binder", "FStar.Reflection.Types.term", "FStar.Tactics.V2.Builtins.string_to_term", "FStar.Reflection.V2.Data.binding", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons", "FStar.Tactics.V2.Builtins.push_bv_dsenv" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *) let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t') // GGG Needed? delete if not let namedv_to_simple_binder (n : namedv) : Tac simple_binder = let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; (* GGG USINGSORT *) qual = Q_Explicit; attrs = []; } [@@coercion] let binding_to_simple_binder (b : binding) : Tot simple_binder = { ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = []; } (** [string_to_term_with_lb [(id1, t1); ...; (idn, tn)] e s] parses [s] as a term in environment [e] augmented with bindings [id1, t1], ..., [idn, tn]. *) let string_to_term_with_lb (letbindings: list (string * term))
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val string_to_term_with_lb (letbindings: list (string * term)) (e: env) (t: string) : Tac term
[]
FStar.Tactics.V2.Derived.string_to_term_with_lb
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
letbindings: Prims.list (Prims.string * FStar.Tactics.NamedView.term) -> e: FStar.Reflection.Types.env -> t: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 21, "end_line": 916, "start_col": 3, "start_line": 908 }
FStar.Tactics.Effect.Tac
val iterAll (t: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
val iterAll (t: (unit -> Tac unit)) : Tac unit let rec iterAll (t: (unit -> Tac unit)) : Tac unit =
true
null
false
match goals () with | [] -> () | _ :: _ -> let _ = divide 1 t (fun () -> iterAll t) in ()
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Derived.divide", "FStar.Tactics.V2.Derived.iterAll", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit =
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val iterAll (t: (unit -> Tac unit)) : Tac unit
[ "recursion" ]
FStar.Tactics.V2.Derived.iterAll
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 60, "end_line": 350, "start_col": 4, "start_line": 348 }
FStar.Tactics.Effect.TAC
val fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m)
val fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) let fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) =
true
null
false
set_urgency 0; raise #a (TacticFailure m)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.Effect.raise", "FStar.Tactics.Common.TacticFailure", "Prims.unit", "FStar.Tactics.V2.Builtins.set_urgency", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Result.__result", "Prims.l_Forall", "FStar.Tactics.Result.Failed", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
[]
FStar.Tactics.V2.Derived.fail_silently
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.TAC a
{ "end_col": 30, "end_line": 69, "start_col": 4, "start_line": 68 }
FStar.Tactics.Effect.Tac
val flip: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs)
val flip: Prims.unit -> Tac unit let flip () : Tac unit =
true
null
false
let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1 :: g2 :: gs -> set_goals (g2 :: g1 :: gs)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_goals", "Prims.Cons", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val flip: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Derived.flip
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 42, "end_line": 142, "start_col": 24, "start_line": 138 }
FStar.Tactics.Effect.Tac
val focus (t: (unit -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x
val focus (t: (unit -> Tac 'a)) : Tac 'a let focus (t: (unit -> Tac 'a)) : Tac 'a =
true
null
false
match goals () with | [] -> fail "focus: no goals" | g :: gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_smt_goals", "FStar.Tactics.V2.Derived.op_At", "FStar.Tactics.V2.Derived.smt_goals", "FStar.Tactics.V2.Builtins.set_goals", "FStar.Tactics.V2.Derived.goals", "Prims.Nil", "Prims.Cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val focus (t: (unit -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V2.Derived.focus
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 9, "end_line": 336, "start_col": 4, "start_line": 329 }
FStar.Tactics.Effect.Tac
val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) let rec mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) =
true
null
false
match goals () with | [] -> [] | _ :: _ -> let h, t = divide 1 t (fun () -> mapAll t) in h :: t
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.Nil", "Prims.list", "FStar.Tactics.Types.goal", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Derived.divide", "FStar.Tactics.V2.Derived.mapAll", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a)
[ "recursion" ]
FStar.Tactics.V2.Derived.mapAll
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac (Prims.list 'a)
{ "end_col": 66, "end_line": 344, "start_col": 4, "start_line": 342 }
FStar.Tactics.Effect.Tac
val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y)
val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) let divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) =
true
null
false
if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.int", "Prims.unit", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Builtins.set_smt_goals", "FStar.Tactics.V2.Derived.op_At", "FStar.Tactics.V2.Builtins.set_goals", "FStar.Tactics.V2.Derived.smt_goals", "FStar.Tactics.V2.Derived.goals", "Prims.Nil", "FStar.List.Tot.Base.splitAt", "Prims.op_LessThan", "FStar.Tactics.V2.Derived.fail", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b)
[]
FStar.Tactics.V2.Derived.divide
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.int -> l: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> r: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'b) -> FStar.Tactics.Effect.Tac ('a * 'b)
{ "end_col": 10, "end_line": 319, "start_col": 4, "start_line": 305 }
FStar.Tactics.Effect.Tac
val fresh_namedv_named (s: string) : Tac namedv
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; })
val fresh_namedv_named (s: string) : Tac namedv let fresh_namedv_named (s: string) : Tac namedv =
true
null
false
let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n })
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.NamedView.pack_namedv", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Sealed.seal", "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Unknown", "FStar.Tactics.NamedView.namedv", "Prims.nat", "FStar.Tactics.V2.Builtins.fresh" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fresh_namedv_named (s: string) : Tac namedv
[]
FStar.Tactics.V2.Derived.fresh_namedv_named
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.namedv
{ "end_col": 4, "end_line": 394, "start_col": 48, "start_line": 388 }
FStar.Tactics.Effect.Tac
val fresh_implicit_binder (t: typ) : Tac binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; }
val fresh_implicit_binder (t: typ) : Tac binder let fresh_implicit_binder (t: typ) : Tac binder =
true
null
false
let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] }
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.Mkbinder", "FStar.Sealed.seal", "Prims.string", "Prims.op_Hat", "Prims.string_of_int", "FStar.Reflection.V2.Data.Q_Implicit", "Prims.Nil", "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.binder", "Prims.nat", "FStar.Tactics.V2.Builtins.fresh" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; }
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fresh_implicit_binder (t: typ) : Tac binder
[]
FStar.Tactics.V2.Derived.fresh_implicit_binder
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.typ -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binder
{ "end_col": 3, "end_line": 434, "start_col": 50, "start_line": 426 }
FStar.Tactics.Effect.Tac
val fresh_binder (t: typ) : Tac simple_binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; }
val fresh_binder (t: typ) : Tac simple_binder let fresh_binder (t: typ) : Tac simple_binder =
true
null
false
let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] }
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.Mkbinder", "FStar.Sealed.seal", "Prims.string", "Prims.op_Hat", "Prims.string_of_int", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.simple_binder", "Prims.nat", "FStar.Tactics.V2.Builtins.fresh" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; }
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fresh_binder (t: typ) : Tac simple_binder
[]
FStar.Tactics.V2.Derived.fresh_binder
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.typ -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.simple_binder
{ "end_col": 3, "end_line": 424, "start_col": 48, "start_line": 416 }
FStar.Tactics.Effect.TacH
val guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else ()
val guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) let guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) =
true
null
false
if not b then fail "guard failed"
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.bool", "Prims.op_Negation", "FStar.Tactics.V2.Derived.fail", "Prims.unit", "FStar.Tactics.Types.proofstate", "Prims.l_True", "FStar.Tactics.Result.__result", "Prims.l_and", "Prims.b2t", "FStar.Tactics.Result.uu___is_Success", "Prims.eq2", "FStar.Tactics.Result.__proj__Success__item__ps", "FStar.Tactics.Result.uu___is_Failed" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r))
[]
FStar.Tactics.V2.Derived.guard
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: Prims.bool -> FStar.Tactics.Effect.TacH Prims.unit
{ "end_col": 11, "end_line": 444, "start_col": 4, "start_line": 442 }
FStar.Tactics.Effect.Tac
val fresh_binder_named (s: string) (t: typ) : Tac simple_binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; }
val fresh_binder_named (s: string) (t: typ) : Tac simple_binder let fresh_binder_named (s: string) (t: typ) : Tac simple_binder =
true
null
false
let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] }
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.Mkbinder", "FStar.Sealed.seal", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.simple_binder", "Prims.nat", "FStar.Tactics.V2.Builtins.fresh" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; })
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fresh_binder_named (s: string) (t: typ) : Tac simple_binder
[]
FStar.Tactics.V2.Derived.fresh_binder_named
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.string -> t: FStar.Reflection.Types.typ -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.simple_binder
{ "end_col": 3, "end_line": 414, "start_col": 67, "start_line": 406 }
FStar.Tactics.Effect.Tac
val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t
val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) let rec repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) =
true
null
false
match catch t with | Inl _ -> [] | Inr x -> x :: repeat t
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "Prims.exn", "Prims.Nil", "Prims.list", "Prims.Cons", "FStar.Tactics.V2.Derived.repeat", "FStar.Pervasives.either", "FStar.Tactics.V2.Builtins.catch" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
[ "recursion" ]
FStar.Tactics.V2.Derived.repeat
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac (Prims.list a)
{ "end_col": 28, "end_line": 471, "start_col": 4, "start_line": 469 }
FStar.Tactics.Effect.Tac
val try_rewrite_equality (x: term) (bs: list binding) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end
val try_rewrite_equality (x: term) (bs: list binding) : Tac unit let rec try_rewrite_equality (x: term) (bs: list binding) : Tac unit =
true
null
false
match bs with | [] -> () | x_t :: bs -> match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Builtins.term_eq", "FStar.Tactics.V2.Builtins.rewrite", "Prims.bool", "FStar.Tactics.V2.Derived.try_rewrite_equality", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.type_of_binding" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) ()
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val try_rewrite_equality (x: term) (bs: list binding) : Tac unit
[ "recursion" ]
FStar.Tactics.V2.Derived.try_rewrite_equality
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Tactics.NamedView.term -> bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 11, "end_line": 621, "start_col": 4, "start_line": 611 }
FStar.Tactics.Effect.Tac
val rewrite_all_context_equalities (bs: list binding) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end
val rewrite_all_context_equalities (bs: list binding) : Tac unit let rec rewrite_all_context_equalities (bs: list binding) : Tac unit =
true
null
false
match bs with | [] -> () | x_t :: bs -> (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Derived.rewrite_all_context_equalities", "FStar.Tactics.V2.Derived.try_with", "FStar.Tactics.V2.Builtins.rewrite", "Prims.exn" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_all_context_equalities (bs: list binding) : Tac unit
[ "recursion" ]
FStar.Tactics.V2.Derived.rewrite_all_context_equalities
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 7, "end_line": 629, "start_col": 4, "start_line": 624 }
Prims.Tot
val binding_to_simple_binder (b: binding) : Tot simple_binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binding_to_simple_binder (b : binding) : Tot simple_binder = { ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = []; }
val binding_to_simple_binder (b: binding) : Tot simple_binder let binding_to_simple_binder (b: binding) : Tot simple_binder =
false
null
false
{ ppname = b.ppname; uniq = b.uniq; sort = b.sort; qual = Q_Explicit; attrs = [] }
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "total" ]
[ "FStar.Tactics.NamedView.binding", "FStar.Tactics.NamedView.Mkbinder", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__uniq", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__ppname", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__sort", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.simple_binder" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_var (i:int) : Tac binding = let bs = cur_vars () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | tv -> pack tv in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *) let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t') // GGG Needed? delete if not let namedv_to_simple_binder (n : namedv) : Tac simple_binder = let nv = inspect_namedv n in { ppname = nv.ppname; uniq = nv.uniq; sort = unseal nv.sort; (* GGG USINGSORT *) qual = Q_Explicit; attrs = []; } [@@coercion] let binding_to_simple_binder (b : binding) : Tot simple_binder =
false
true
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binding_to_simple_binder (b: binding) : Tot simple_binder
[]
FStar.Tactics.V2.Derived.binding_to_simple_binder
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Tactics.NamedView.binding -> FStar.Tactics.NamedView.simple_binder
{ "end_col": 16, "end_line": 899, "start_col": 4, "start_line": 895 }
FStar.Tactics.Effect.Tac
val get_match_body: Prims.unit -> Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match"
val get_match_body: Prims.unit -> Tac term let get_match_body () : Tac term =
true
null
false
match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match"
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.NamedView.term", "FStar.Reflection.Types.term", "FStar.Pervasives.Native.option", "FStar.Tactics.NamedView.match_returns_ascription", "Prims.list", "FStar.Tactics.NamedView.branch", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.term_view", "Prims.b2t", "FStar.Tactics.NamedView.notAscription", "FStar.Tactics.V2.SyntaxHelpers.inspect_unascribe", "FStar.Reflection.V2.Derived.unsquash_term", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Reflection.Types.typ" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_match_body: Prims.unit -> Tac term
[]
FStar.Tactics.V2.Derived.get_match_body
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 46, "end_line": 821, "start_col": 2, "start_line": 817 }
FStar.Tactics.Effect.Tac
val last (x: list 'a) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs
val last (x: list 'a) : Tac 'a let rec last (x: list 'a) : Tac 'a =
true
null
false
match x with | [] -> fail "last: empty list" | [x] -> x | _ :: xs -> last xs
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.list", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.V2.Derived.last" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match"
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val last (x: list 'a) : Tac 'a
[ "recursion" ]
FStar.Tactics.V2.Derived.last
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.list 'a -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 22, "end_line": 827, "start_col": 4, "start_line": 824 }
Prims.Tot
val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end
val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) let rec extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) =
false
null
false
match n, l with | _, [] -> None | 0, hd :: tl -> Some (hd, tl) | _, hd :: tl -> match extract_nth (n - 1) tl with | Some (hd', tl') -> Some (hd', hd :: tl') | None -> None
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[ "total" ]
[ "Prims.nat", "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Some", "FStar.Tactics.V2.Derived.extract_nth", "Prims.op_Subtraction", "Prims.Cons", "FStar.Pervasives.Native.option" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a)
[ "recursion" ]
FStar.Tactics.V2.Derived.extract_nth
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> l: Prims.list 'a -> FStar.Pervasives.Native.option ('a * Prims.list 'a)
{ "end_col": 5, "end_line": 793, "start_col": 2, "start_line": 786 }
FStar.Tactics.Effect.Tac
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t)
let tlabel' (l: string) =
true
null
false
match goals () with | [] -> fail "tlabel': no goals" | h :: t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.fail", "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_goals", "Prims.Cons", "FStar.Tactics.Types.set_label", "Prims.op_Hat", "FStar.Tactics.Types.get_label", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tlabel' : l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V2.Derived.tlabel'
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 26, "end_line": 778, "start_col": 4, "start_line": 774 }
FStar.Tactics.Effect.Tac
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t)
let tlabel (l: string) =
true
null
false
match goals () with | [] -> fail "tlabel: no goals" | h :: t -> set_goals (set_label l h :: t)
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.fail", "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V2.Builtins.set_goals", "Prims.Cons", "FStar.Tactics.Types.set_label", "FStar.Tactics.V2.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tlabel : l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V2.Derived.tlabel
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 38, "end_line": 771, "start_col": 4, "start_line": 768 }
FStar.Tactics.Effect.Tac
val destruct_list (t: term) : Tac (list term)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral
val destruct_list (t: term) : Tac (list term) let rec destruct_list (t: term) : Tac (list term) =
true
null
false
let head, args = collect_app t in match inspect head, args with | Tv_FVar fv, [a1, Q_Explicit ; a2, Q_Explicit] | Tv_FVar fv, [_, Q_Implicit ; a1, Q_Explicit ; a2, Q_Explicit] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral
{ "checked_file": "FStar.Tactics.V2.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.SyntaxHelpers.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Derived.fst" }
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Reflection.V2.Data.argv", "FStar.Reflection.Types.fv", "FStar.Reflection.Types.term", "Prims.op_Equality", "Prims.string", "FStar.Reflection.V2.Builtins.inspect_fv", "FStar.Reflection.Const.cons_qn", "Prims.Cons", "FStar.Tactics.V2.Derived.destruct_list", "Prims.bool", "FStar.Tactics.Effect.raise", "FStar.Tactics.Common.NotAListLiteral", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.Const.nil_qn", "Prims.Nil", "FStar.Tactics.NamedView.named_term_view", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.NamedView.inspect", "FStar.Tactics.V2.SyntaxHelpers.collect_app" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Derived open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V2.SyntaxHelpers open FStar.VConfig open FStar.Tactics.NamedView open FStar.Tactics.V2.SyntaxCoercions module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = unseal b.ppname let binder_to_string (b : binder) : Tac string = // TODO: print aqual, attributes..? or no? name_of_binder b ^ "@@" ^ string_of_int b.uniq ^ "::(" ^ term_to_string b.sort ^ ")" let binding_to_string (b : binding) : Tac string = unseal b.ppname let type_of_var (x : namedv) : Tac typ = unseal ((inspect_namedv x).sort) let type_of_binding (x : binding) : Tot typ = x.sort exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g let cur_vars () : Tac (list binding) = vars_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* sigh GGG fix names!! *) let fresh_namedv_named (s:string) : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal s; sort = seal (pack Tv_Unknown); uniq = n; }) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_namedv_named]. *) let fresh_namedv () : Tac namedv = let n = fresh () in pack_namedv ({ ppname = seal ("x" ^ string_of_int n); sort = seal (pack Tv_Unknown); uniq = n; }) let fresh_binder_named (s : string) (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal s; sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_binder (t : typ) : Tac simple_binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Explicit; attrs = [] ; } let fresh_implicit_binder (t : typ) : Tac binder = let n = fresh () in { ppname = seal ("x" ^ string_of_int n); sort = t; uniq = n; qual = Q_Implicit; attrs = [] ; } let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binding) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binding = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binding = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binding = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binding = let b = pose t in rename_to b s let for_each_binding (f : binding -> Tac 'a) : Tac (list 'a) = map f (cur_vars ()) let rec revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl let binder_sort (b : binder) : Tot typ = b.sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (xs : list binding) : Tac unit = match xs with | [] -> fail "no assumption matches goal" | b::bs -> try exact b with | _ -> try (apply (`FStar.Squash.return_squash); exact b) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_vars ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (x:binding) : Tac unit = ((fun () -> rewrite x) <|> (fun () -> var_retype x; apply_lemma (`__eq_sym); rewrite x) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binding x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:list binding) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_vars ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_vars ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : Tot term = let sq : term = pack (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : Tot term = let eq : term = pack (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack (Tv_Var e) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binding) : Tac unit = match term_as_formula (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact b)] | _ -> begin match term_as_formula' (type_of_binding b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact b)] | _ -> fail "grewrite_eq: binder type is not an equality" end private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t)
false
false
FStar.Tactics.V2.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val destruct_list (t: term) : Tac (list term)
[ "recursion" ]
FStar.Tactics.V2.Derived.destruct_list
{ "file_name": "ulib/FStar.Tactics.V2.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.term)
{ "end_col": 27, "end_line": 814, "start_col": 52, "start_line": 801 }
Prims.Tot
val stack_to_s (s:vale_stack) : S.machine_stack
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stack_to_s s = s
val stack_to_s (s:vale_stack) : S.machine_stack let stack_to_s s =
false
null
false
s
{ "checked_file": "Vale.X64.Stack_Sems.fst.checked", "dependencies": [ "Vale.X64.Stack_i.fst.checked", "Vale.Lib.Set.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_Sems.fst" }
[ "total" ]
[ "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.machine_stack" ]
[]
module Vale.X64.Stack_Sems open FStar.Mul friend Vale.X64.Stack_i
false
true
Vale.X64.Stack_Sems.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stack_to_s (s:vale_stack) : S.machine_stack
[]
Vale.X64.Stack_Sems.stack_to_s
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.Stack_i.vale_stack -> Vale.X64.Machine_Semantics_s.machine_stack
{ "end_col": 20, "end_line": 6, "start_col": 19, "start_line": 6 }
Prims.Tot
val stack_from_s (s:S.machine_stack) : vale_stack
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stack_from_s s = s
val stack_from_s (s:S.machine_stack) : vale_stack let stack_from_s s =
false
null
false
s
{ "checked_file": "Vale.X64.Stack_Sems.fst.checked", "dependencies": [ "Vale.X64.Stack_i.fst.checked", "Vale.Lib.Set.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_Sems.fst" }
[ "total" ]
[ "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.X64.Stack_i.vale_stack" ]
[]
module Vale.X64.Stack_Sems open FStar.Mul friend Vale.X64.Stack_i
false
true
Vale.X64.Stack_Sems.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stack_from_s (s:S.machine_stack) : vale_stack
[]
Vale.X64.Stack_Sems.stack_from_s
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.Machine_Semantics_s.machine_stack -> Vale.X64.Stack_i.vale_stack
{ "end_col": 22, "end_line": 7, "start_col": 21, "start_line": 7 }
FStar.Pervasives.Lemma
val free_stack_same_load (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma (requires S.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures S.eval_stack ptr h == S.eval_stack ptr (S.free_stack' start finish h)) [SMTPat (S.eval_stack ptr (S.free_stack' start finish h))]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_stack_same_load start finish ptr h = reveal_opaque (`%S.valid_addr64) S.valid_addr64; let S.Machine_stack _ mem = h in let S.Machine_stack _ mem' = S.free_stack' start finish h in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish); S.get_heap_val64_reveal ()
val free_stack_same_load (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma (requires S.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures S.eval_stack ptr h == S.eval_stack ptr (S.free_stack' start finish h)) [SMTPat (S.eval_stack ptr (S.free_stack' start finish h))] let free_stack_same_load start finish ptr h =
false
null
true
reveal_opaque (`%S.valid_addr64) S.valid_addr64; let S.Machine_stack _ mem = h in let S.Machine_stack _ mem' = S.free_stack' start finish h in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish); S.get_heap_val64_reveal ()
{ "checked_file": "Vale.X64.Stack_Sems.fst.checked", "dependencies": [ "Vale.X64.Stack_i.fst.checked", "Vale.Lib.Set.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_Sems.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "FStar.Map.domain", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "Vale.X64.Machine_Semantics_s.free_stack'", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.X64.Stack_Sems open FStar.Mul friend Vale.X64.Stack_i let stack_to_s s = s let stack_from_s s = s let lemma_stack_from_to s = () let lemma_stack_to_from s = () let equiv_valid_src_stack64 ptr h = () let equiv_load_stack64 ptr h = ()
false
false
Vale.X64.Stack_Sems.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_stack_same_load (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma (requires S.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures S.eval_stack ptr h == S.eval_stack ptr (S.free_stack' start finish h)) [SMTPat (S.eval_stack ptr (S.free_stack' start finish h))]
[]
Vale.X64.Stack_Sems.free_stack_same_load
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.X64.Machine_Semantics_s.machine_stack -> FStar.Pervasives.Lemma (requires Vale.X64.Machine_Semantics_s.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures Vale.X64.Machine_Semantics_s.eval_stack ptr h == Vale.X64.Machine_Semantics_s.eval_stack ptr (Vale.X64.Machine_Semantics_s.free_stack' start finish h)) [ SMTPat (Vale.X64.Machine_Semantics_s.eval_stack ptr (Vale.X64.Machine_Semantics_s.free_stack' start finish h)) ]
{ "end_col": 28, "end_line": 21, "start_col": 2, "start_line": 17 }
FStar.Pervasives.Lemma
val free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma (requires S.valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures S.eval_stack128 ptr h == S.eval_stack128 ptr (S.free_stack' start finish h)) [SMTPat (S.eval_stack128 ptr (S.free_stack' start finish h))]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_stack_same_load128 start finish ptr h = reveal_opaque (`%S.valid_addr128) S.valid_addr128; let S.Machine_stack _ mem = h in let S.Machine_stack _ mem' = S.free_stack' start finish h in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish); S.get_heap_val128_reveal (); S.get_heap_val32_reveal ()
val free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma (requires S.valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures S.eval_stack128 ptr h == S.eval_stack128 ptr (S.free_stack' start finish h)) [SMTPat (S.eval_stack128 ptr (S.free_stack' start finish h))] let free_stack_same_load128 start finish ptr h =
false
null
true
reveal_opaque (`%S.valid_addr128) S.valid_addr128; let S.Machine_stack _ mem = h in let S.Machine_stack _ mem' = S.free_stack' start finish h in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish); S.get_heap_val128_reveal (); S.get_heap_val32_reveal ()
{ "checked_file": "Vale.X64.Stack_Sems.fst.checked", "dependencies": [ "Vale.X64.Stack_i.fst.checked", "Vale.Lib.Set.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_Sems.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val32_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.get_heap_val128_reveal", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "FStar.Map.domain", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "Vale.X64.Machine_Semantics_s.free_stack'", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr128" ]
[]
module Vale.X64.Stack_Sems open FStar.Mul friend Vale.X64.Stack_i let stack_to_s s = s let stack_from_s s = s let lemma_stack_from_to s = () let lemma_stack_to_from s = () let equiv_valid_src_stack64 ptr h = () let equiv_load_stack64 ptr h = () let free_stack_same_load start finish ptr h = reveal_opaque (`%S.valid_addr64) S.valid_addr64; let S.Machine_stack _ mem = h in let S.Machine_stack _ mem' = S.free_stack' start finish h in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal (Map.domain mem) start finish); S.get_heap_val64_reveal () let equiv_store_stack64 ptr v h = () let store64_same_init_rsp ptr v h = () let equiv_init_rsp h = () let equiv_free_stack start finish h = () let equiv_valid_src_stack128 ptr h = () let equiv_load_stack128 ptr h = ()
false
false
Vale.X64.Stack_Sems.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:S.machine_stack) : Lemma (requires S.valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures S.eval_stack128 ptr h == S.eval_stack128 ptr (S.free_stack' start finish h)) [SMTPat (S.eval_stack128 ptr (S.free_stack' start finish h))]
[]
Vale.X64.Stack_Sems.free_stack_same_load128
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_Sems.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.X64.Machine_Semantics_s.machine_stack -> FStar.Pervasives.Lemma (requires Vale.X64.Machine_Semantics_s.valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures Vale.X64.Machine_Semantics_s.eval_stack128 ptr h == Vale.X64.Machine_Semantics_s.eval_stack128 ptr (Vale.X64.Machine_Semantics_s.free_stack' start finish h)) [ SMTPat (Vale.X64.Machine_Semantics_s.eval_stack128 ptr (Vale.X64.Machine_Semantics_s.free_stack' start finish h)) ]
{ "end_col": 28, "end_line": 41, "start_col": 2, "start_line": 36 }
Prims.Tot
val return (#a: Type) (x: a) : possibly a
[ { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let return (#a:Type) (x:a) : possibly a = Ok x
val return (#a: Type) (x: a) : possibly a let return (#a: Type) (x: a) : possibly a =
false
null
false
Ok x
{ "checked_file": "Vale.Def.PossiblyMonad.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Def.PossiblyMonad.fst" }
[ "total" ]
[ "Vale.Def.PossiblyMonad.Ok", "Vale.Def.PossiblyMonad.possibly" ]
[]
module Vale.Def.PossiblyMonad /// Similar to the [maybe] monad in Haskell (which is like the /// [option] type in F* and OCaml), but instead, we also store the /// reason for the error when the error occurs. type possibly 'a = | Ok : v:'a -> possibly 'a | Err : reason:string -> possibly 'a
false
false
Vale.Def.PossiblyMonad.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val return (#a: Type) (x: a) : possibly a
[]
Vale.Def.PossiblyMonad.return
{ "file_name": "vale/specs/defs/Vale.Def.PossiblyMonad.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a -> Vale.Def.PossiblyMonad.possibly a
{ "end_col": 6, "end_line": 12, "start_col": 2, "start_line": 12 }