effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val map (a:eqtype) (b:Type u#a) : Type u#a | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map = map' | val map (a:eqtype) (b:Type u#a) : Type u#a
let map = | false | null | false | map' | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Vale.Lib.MapTree.map'"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi
#pop-options
(** Map interface *)
#push-options "--max_fuel 1 --max_ifuel 2"
noeq
type map' (a:eqtype) b =
| Map :
is_le:(a -> a -> bool) ->
t:tree a b ->
default_v:b ->
invs:squash (is_cmp is_le /\ inv is_le t None None) ->
map' a b
#pop-options | false | true | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map (a:eqtype) (b:Type u#a) : Type u#a | [] | Vale.Lib.MapTree.map | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.eqtype -> b: Type -> Type | {
"end_col": 14,
"end_line": 144,
"start_col": 10,
"start_line": 144
} |
Prims.Tot | val mkNode (#a: eqtype) (#b: Type) (key: a) (value: b) (l r: tree a b) : tree a b | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r | val mkNode (#a: eqtype) (#b: Type) (key: a) (value: b) (l r: tree a b) : tree a b
let mkNode (#a: eqtype) (#b: Type) (key: a) (value: b) (l r: tree a b) : tree a b = | false | null | false | let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Vale.Lib.MapTree.tree",
"Vale.Lib.MapTree.Node",
"Prims.op_Addition",
"Prims.int",
"Prims.op_GreaterThan",
"Prims.bool",
"Prims.nat",
"Vale.Lib.MapTree.height"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mkNode (#a: eqtype) (#b: Type) (key: a) (value: b) (l r: tree a b) : tree a b | [] | Vale.Lib.MapTree.mkNode | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | key: a -> value: b -> l: Vale.Lib.MapTree.tree a b -> r: Vale.Lib.MapTree.tree a b
-> Vale.Lib.MapTree.tree a b | {
"end_col": 28,
"end_line": 19,
"start_col": 78,
"start_line": 15
} |
Prims.Tot | val height (#a: eqtype) (#b: Type) (t: tree a b) : nat | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h | val height (#a: eqtype) (#b: Type) (t: tree a b) : nat
let height (#a: eqtype) (#b: Type) (t: tree a b) : nat = | false | null | false | match t with
| Empty -> 0
| Node _ _ h _ _ -> h | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Vale.Lib.MapTree.tree",
"Prims.nat"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val height (#a: eqtype) (#b: Type) (t: tree a b) : nat | [] | Vale.Lib.MapTree.height | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Vale.Lib.MapTree.tree a b -> Prims.nat | {
"end_col": 23,
"end_line": 13,
"start_col": 2,
"start_line": 11
} |
Prims.Tot | val sel (#a:eqtype) (#b:Type) (m:map a b) (key:a) : b | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sel #a #b (Map is_le t d _) key =
match get is_le t key with Some v -> v | None -> d | val sel (#a:eqtype) (#b:Type) (m:map a b) (key:a) : b
let sel #a #b (Map is_le t d _) key = | false | null | false | match get is_le t key with
| Some v -> v
| None -> d | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Vale.Lib.MapTree.map",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"Prims.squash",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"FStar.Pervasives.Native.None",
"Vale.Lib.MapTree.get"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi
#pop-options
(** Map interface *)
#push-options "--max_fuel 1 --max_ifuel 2"
noeq
type map' (a:eqtype) b =
| Map :
is_le:(a -> a -> bool) ->
t:tree a b ->
default_v:b ->
invs:squash (is_cmp is_le /\ inv is_le t None None) ->
map' a b
#pop-options
let map = map'
let const a b is_le d =
Map is_le Empty d () | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sel (#a:eqtype) (#b:Type) (m:map a b) (key:a) : b | [] | Vale.Lib.MapTree.sel | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.Lib.MapTree.map a b -> key: a -> b | {
"end_col": 52,
"end_line": 150,
"start_col": 2,
"start_line": 150
} |
FStar.Pervasives.Lemma | val lemma_sel_upd_self (#a:eqtype) (#b:Type) (m:map a b) (key:a) (value:b) : Lemma
(ensures sel (upd m key value) key == value)
[SMTPat (sel (upd m key value) key)] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_sel_upd_self #a #b (Map is_le t _ _) key value =
lemma_get_put_self is_le t key value None None | val lemma_sel_upd_self (#a:eqtype) (#b:Type) (m:map a b) (key:a) (value:b) : Lemma
(ensures sel (upd m key value) key == value)
[SMTPat (sel (upd m key value) key)]
let lemma_sel_upd_self #a #b (Map is_le t _ _) key value = | false | null | true | lemma_get_put_self is_le t key value None None | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Vale.Lib.MapTree.map",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"Prims.squash",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"FStar.Pervasives.Native.None",
"Vale.Lib.MapTree.lemma_get_put_self",
"Prims.unit"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi
#pop-options
(** Map interface *)
#push-options "--max_fuel 1 --max_ifuel 2"
noeq
type map' (a:eqtype) b =
| Map :
is_le:(a -> a -> bool) ->
t:tree a b ->
default_v:b ->
invs:squash (is_cmp is_le /\ inv is_le t None None) ->
map' a b
#pop-options
let map = map'
let const a b is_le d =
Map is_le Empty d ()
let sel #a #b (Map is_le t d _) key =
match get is_le t key with Some v -> v | None -> d
let upd #a #b (Map is_le t d _) key value =
let t' = put is_le t key value in
lemma_put_inv is_le t key value None None;
Map is_le t' d ()
let lemma_const a b is_le d key =
() | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_sel_upd_self (#a:eqtype) (#b:Type) (m:map a b) (key:a) (value:b) : Lemma
(ensures sel (upd m key value) key == value)
[SMTPat (sel (upd m key value) key)] | [] | Vale.Lib.MapTree.lemma_sel_upd_self | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.Lib.MapTree.map a b -> key: a -> value: b
-> FStar.Pervasives.Lemma
(ensures Vale.Lib.MapTree.sel (Vale.Lib.MapTree.upd m key value) key == value)
[SMTPat (Vale.Lib.MapTree.sel (Vale.Lib.MapTree.upd m key value) key)] | {
"end_col": 48,
"end_line": 161,
"start_col": 2,
"start_line": 161
} |
FStar.Pervasives.Lemma | val lemma_sel_upd_other (#a:eqtype) (#b:Type) (m:map a b) (key kx:a) (value:b) : Lemma
(requires key =!= kx)
(ensures sel (upd m key value) kx == sel m kx)
[SMTPat (sel (upd m key value) kx)] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_sel_upd_other #a #b (Map is_le t _ _) key kx value =
lemma_get_put_other is_le t key kx value None None | val lemma_sel_upd_other (#a:eqtype) (#b:Type) (m:map a b) (key kx:a) (value:b) : Lemma
(requires key =!= kx)
(ensures sel (upd m key value) kx == sel m kx)
[SMTPat (sel (upd m key value) kx)]
let lemma_sel_upd_other #a #b (Map is_le t _ _) key kx value = | false | null | true | lemma_get_put_other is_le t key kx value None None | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Vale.Lib.MapTree.map",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"Prims.squash",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"FStar.Pervasives.Native.None",
"Vale.Lib.MapTree.lemma_get_put_other",
"Prims.unit"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi
#pop-options
(** Map interface *)
#push-options "--max_fuel 1 --max_ifuel 2"
noeq
type map' (a:eqtype) b =
| Map :
is_le:(a -> a -> bool) ->
t:tree a b ->
default_v:b ->
invs:squash (is_cmp is_le /\ inv is_le t None None) ->
map' a b
#pop-options
let map = map'
let const a b is_le d =
Map is_le Empty d ()
let sel #a #b (Map is_le t d _) key =
match get is_le t key with Some v -> v | None -> d
let upd #a #b (Map is_le t d _) key value =
let t' = put is_le t key value in
lemma_put_inv is_le t key value None None;
Map is_le t' d ()
let lemma_const a b is_le d key =
()
let lemma_sel_upd_self #a #b (Map is_le t _ _) key value =
lemma_get_put_self is_le t key value None None | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_sel_upd_other (#a:eqtype) (#b:Type) (m:map a b) (key kx:a) (value:b) : Lemma
(requires key =!= kx)
(ensures sel (upd m key value) kx == sel m kx)
[SMTPat (sel (upd m key value) kx)] | [] | Vale.Lib.MapTree.lemma_sel_upd_other | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.Lib.MapTree.map a b -> key: a -> kx: a -> value: b
-> FStar.Pervasives.Lemma (requires ~(key == kx))
(ensures
Vale.Lib.MapTree.sel (Vale.Lib.MapTree.upd m key value) kx == Vale.Lib.MapTree.sel m kx)
[SMTPat (Vale.Lib.MapTree.sel (Vale.Lib.MapTree.upd m key value) kx)] | {
"end_col": 52,
"end_line": 164,
"start_col": 2,
"start_line": 164
} |
Prims.Tot | val const (a:eqtype) (b:Type) (is_le:(a -> a -> bool){is_cmp is_le}) (default_v:b) : map a b | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let const a b is_le d =
Map is_le Empty d () | val const (a:eqtype) (b:Type) (is_le:(a -> a -> bool){is_cmp is_le}) (default_v:b) : map a b
let const a b is_le d = | false | null | false | Map is_le Empty d () | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.Map",
"Vale.Lib.MapTree.Empty",
"Vale.Lib.MapTree.map"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi
#pop-options
(** Map interface *)
#push-options "--max_fuel 1 --max_ifuel 2"
noeq
type map' (a:eqtype) b =
| Map :
is_le:(a -> a -> bool) ->
t:tree a b ->
default_v:b ->
invs:squash (is_cmp is_le /\ inv is_le t None None) ->
map' a b
#pop-options
let map = map' | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val const (a:eqtype) (b:Type) (is_le:(a -> a -> bool){is_cmp is_le}) (default_v:b) : map a b | [] | Vale.Lib.MapTree.const | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Prims.eqtype ->
b: Type ->
is_le: (_: a -> _: a -> Prims.bool){Vale.Lib.MapTree.is_cmp is_le} ->
default_v: b
-> Vale.Lib.MapTree.map a b | {
"end_col": 22,
"end_line": 147,
"start_col": 2,
"start_line": 147
} |
Prims.Tot | val get (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) : option b | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key | val get (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) : option b
let rec get (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) : option b = | false | null | false | match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v else if is_le key k then get is_le l key else get is_le r key | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"FStar.Pervasives.Native.None",
"Prims.nat",
"Prims.op_Equality",
"FStar.Pervasives.Native.Some",
"Vale.Lib.MapTree.get",
"FStar.Pervasives.Native.option"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) : option b | [
"recursion"
] | Vale.Lib.MapTree.get | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | is_le: (_: a -> _: a -> Prims.bool) -> t: Vale.Lib.MapTree.tree a b -> key: a
-> FStar.Pervasives.Native.option b | {
"end_col": 21,
"end_line": 49,
"start_col": 2,
"start_line": 42
} |
Prims.Tot | val upd (#a:eqtype) (#b:Type) (m:map a b) (key:a) (value:b) : map a b | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let upd #a #b (Map is_le t d _) key value =
let t' = put is_le t key value in
lemma_put_inv is_le t key value None None;
Map is_le t' d () | val upd (#a:eqtype) (#b:Type) (m:map a b) (key:a) (value:b) : map a b
let upd #a #b (Map is_le t d _) key value = | false | null | false | let t' = put is_le t key value in
lemma_put_inv is_le t key value None None;
Map is_le t' d () | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Vale.Lib.MapTree.map",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"Prims.squash",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"FStar.Pervasives.Native.None",
"Vale.Lib.MapTree.Map",
"Prims.unit",
"Vale.Lib.MapTree.lemma_put_inv",
"Vale.Lib.MapTree.put"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi
#pop-options
(** Map interface *)
#push-options "--max_fuel 1 --max_ifuel 2"
noeq
type map' (a:eqtype) b =
| Map :
is_le:(a -> a -> bool) ->
t:tree a b ->
default_v:b ->
invs:squash (is_cmp is_le /\ inv is_le t None None) ->
map' a b
#pop-options
let map = map'
let const a b is_le d =
Map is_le Empty d ()
let sel #a #b (Map is_le t d _) key =
match get is_le t key with Some v -> v | None -> d | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val upd (#a:eqtype) (#b:Type) (m:map a b) (key:a) (value:b) : map a b | [] | Vale.Lib.MapTree.upd | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.Lib.MapTree.map a b -> key: a -> value: b -> Vale.Lib.MapTree.map a b | {
"end_col": 19,
"end_line": 155,
"start_col": 43,
"start_line": 152
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi | let rec inv (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (lo hi: option a) = | false | null | false | let op_Less x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"FStar.Pervasives.Native.option",
"Prims.l_True",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Vale.Lib.MapTree.inv",
"FStar.Pervasives.Native.Some",
"Prims.logical",
"Vale.Lib.MapTree.is_lt_option"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val inv : is_le: (_: a -> _: a -> Prims.bool) ->
t: Vale.Lib.MapTree.tree a b ->
lo: FStar.Pervasives.Native.option a ->
hi: FStar.Pervasives.Native.option a
-> Prims.logical | [
"recursion"
] | Vale.Lib.MapTree.inv | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
is_le: (_: a -> _: a -> Prims.bool) ->
t: Vale.Lib.MapTree.tree a b ->
lo: FStar.Pervasives.Native.option a ->
hi: FStar.Pervasives.Native.option a
-> Prims.logical | {
"end_col": 60,
"end_line": 74,
"start_col": 88,
"start_line": 68
} |
|
Prims.Tot | val put (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) (value: b)
: tree a b | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value)) | val put (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) (value: b)
: tree a b
let rec put (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) (value: b)
: tree a b = | false | null | false | match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k
then mkNode k value l r
else
if is_le key k
then balance (mkNode k v (put is_le l key value) r)
else balance (mkNode k v l (put is_le r key value)) | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"Vale.Lib.MapTree.mkNode",
"Vale.Lib.MapTree.Empty",
"Prims.nat",
"Prims.op_Equality",
"Vale.Lib.MapTree.balance",
"Vale.Lib.MapTree.put"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val put (#a: eqtype) (#b: Type) (is_le: (a -> a -> bool)) (t: tree a b) (key: a) (value: b)
: tree a b | [
"recursion"
] | Vale.Lib.MapTree.put | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | is_le: (_: a -> _: a -> Prims.bool) -> t: Vale.Lib.MapTree.tree a b -> key: a -> value: b
-> Vale.Lib.MapTree.tree a b | {
"end_col": 52,
"end_line": 59,
"start_col": 2,
"start_line": 52
} |
FStar.Pervasives.Lemma | val lemma_get_put_self
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma (requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi | val lemma_get_put_self
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma (requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
let rec lemma_get_put_self
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma (requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value) = | false | null | true | match t with
| Empty -> ()
| Node k v _ l r ->
if key = k
then ()
else
if is_le key k
then lemma_get_put_self is_le l key value lo (Some k)
else lemma_get_put_self is_le r key value (Some k) hi | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"FStar.Pervasives.Native.option",
"Prims.nat",
"Prims.op_Equality",
"Vale.Lib.MapTree.lemma_get_put_self",
"FStar.Pervasives.Native.Some",
"Prims.unit",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"Prims.squash",
"Prims.eq2",
"Vale.Lib.MapTree.get",
"Vale.Lib.MapTree.put",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value) | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_get_put_self
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma (requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value) | [
"recursion"
] | Vale.Lib.MapTree.lemma_get_put_self | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
is_le: (_: a -> _: a -> Prims.bool) ->
t: Vale.Lib.MapTree.tree a b ->
key: a ->
value: b ->
lo: FStar.Pervasives.Native.option a ->
hi: FStar.Pervasives.Native.option a
-> FStar.Pervasives.Lemma
(requires Vale.Lib.MapTree.is_cmp is_le /\ Vale.Lib.MapTree.inv is_le t lo hi)
(ensures
Vale.Lib.MapTree.get is_le (Vale.Lib.MapTree.put is_le t key value) key ==
FStar.Pervasives.Native.Some value) | {
"end_col": 54,
"end_line": 107,
"start_col": 2,
"start_line": 100
} |
FStar.Pervasives.Lemma | val lemma_put_inv
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi) (ensures inv is_le (put is_le t key value) lo hi) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi | val lemma_put_inv
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi) (ensures inv is_le (put is_le t key value) lo hi)
let rec lemma_put_inv
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi) (ensures inv is_le (put is_le t key value) lo hi) = | false | null | true | match t with
| Empty -> ()
| Node k v _ l r ->
if key = k
then ()
else
if is_le key k
then lemma_put_inv is_le l key value lo (Some k)
else lemma_put_inv is_le r key value (Some k) hi | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"FStar.Pervasives.Native.option",
"Prims.nat",
"Prims.op_Equality",
"Vale.Lib.MapTree.lemma_put_inv",
"FStar.Pervasives.Native.Some",
"Prims.unit",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"Prims.b2t",
"Vale.Lib.MapTree.is_lt_option",
"Prims.squash",
"Vale.Lib.MapTree.put",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi) | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_put_inv
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi) (ensures inv is_le (put is_le t key value) lo hi) | [
"recursion"
] | Vale.Lib.MapTree.lemma_put_inv | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
is_le: (_: a -> _: a -> Prims.bool) ->
t: Vale.Lib.MapTree.tree a b ->
key: a ->
value: b ->
lo: FStar.Pervasives.Native.option a ->
hi: FStar.Pervasives.Native.option a
-> FStar.Pervasives.Lemma
(requires
Vale.Lib.MapTree.is_cmp is_le /\ Vale.Lib.MapTree.inv is_le t lo hi /\
Vale.Lib.MapTree.is_lt_option is_le lo (FStar.Pervasives.Native.Some key) /\
Vale.Lib.MapTree.is_lt_option is_le (FStar.Pervasives.Native.Some key) hi)
(ensures Vale.Lib.MapTree.inv is_le (Vale.Lib.MapTree.put is_le t key value) lo hi) | {
"end_col": 49,
"end_line": 94,
"start_col": 2,
"start_line": 87
} |
FStar.Pervasives.Lemma | val lemma_get_put_other
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key kx: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\ key =!= kx)
(ensures get is_le (put is_le t key value) kx == get is_le t kx) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
=
lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_other is_le l key kx value lo (Some k)
else
lemma_get_put_other is_le r key kx value (Some k) hi | val lemma_get_put_other
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key kx: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\ key =!= kx)
(ensures get is_le (put is_le t key value) kx == get is_le t kx)
let rec lemma_get_put_other
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key kx: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\ key =!= kx)
(ensures get is_le (put is_le t key value) kx == get is_le t kx) = | false | null | true | lemma_put_inv is_le t key value lo hi;
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k
then ()
else
if is_le key k
then lemma_get_put_other is_le l key kx value lo (Some k)
else lemma_get_put_other is_le r key kx value (Some k) hi | {
"checked_file": "Vale.Lib.MapTree.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Lib.MapTree.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Prims.bool",
"Vale.Lib.MapTree.tree",
"FStar.Pervasives.Native.option",
"Prims.nat",
"Prims.op_Equality",
"Vale.Lib.MapTree.lemma_get_put_other",
"FStar.Pervasives.Native.Some",
"Prims.unit",
"Vale.Lib.MapTree.lemma_put_inv",
"Prims.l_and",
"Vale.Lib.MapTree.is_cmp",
"Vale.Lib.MapTree.inv",
"Prims.b2t",
"Vale.Lib.MapTree.is_lt_option",
"Prims.l_not",
"Prims.eq2",
"Prims.squash",
"Vale.Lib.MapTree.get",
"Vale.Lib.MapTree.put",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Lib.MapTree
open FStar.Mul
(** Balanced tree implementation *)
type tree (a:eqtype) (b:Type) =
| Empty : tree a b
| Node : a -> b -> nat -> tree a b -> tree a b -> tree a b
let height (#a:eqtype) (#b:Type) (t:tree a b) : nat =
match t with
| Empty -> 0
| Node _ _ h _ _ -> h
let mkNode (#a:eqtype) (#b:Type) (key:a) (value:b) (l r:tree a b) : tree a b =
let hl = height l in
let hr = height r in
let h = if hl > hr then hl else hr in
Node key value (h + 1) l r
let rotate_l (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kl vl _ l (Node kr vr _ lr rr) -> mkNode kr vr (mkNode kl vl l lr) rr
| _ -> t
let rotate_r (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node kr vr _ (Node kl vl _ ll rl) r -> mkNode kl vl ll (mkNode kr vr rl r)
| _ -> t
let balance (#a:eqtype) (#b:Type) (t:tree a b) : tree a b =
match t with
| Node _ _ _ l r ->
let hl = height l in
let hr = height r in
if hl >= hr + 2 then rotate_r t else
if hr >= hl + 2 then rotate_l t else
t
| _ -> t
let rec get (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) : option b =
match t with
| Empty -> None
| Node k v h l r ->
if key = k then Some v
else if is_le key k then
get is_le l key
else
get is_le r key
let rec put (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) : tree a b =
match t with
| Empty -> mkNode key value Empty Empty
| Node k v _ l r ->
if key = k then mkNode k value l r
else if is_le key k then
balance (mkNode k v (put is_le l key value) r)
else
balance (mkNode k v l (put is_le r key value))
(** Invariants and proofs of get-put correctness *)
let is_lt_option (#a:eqtype) (is_le:a -> a -> bool) (x y:option a) : bool =
match (x, y) with
| (Some x, Some y) -> is_le x y && x <> y
| _ -> true
let rec inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (lo hi:option a) =
let (<) x y = is_lt_option is_le x y in
match t with
| Empty -> True
| Node x _ _ l r ->
let x = Some x in
lo < x /\ x < hi /\ inv is_le l lo x /\ inv is_le r x hi
#push-options "--max_fuel 2 --max_ifuel 1"
let rec lemma_put_inv (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi
)
(ensures inv is_le (put is_le t key value) lo hi)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_put_inv is_le l key value lo (Some k)
else
lemma_put_inv is_le r key value (Some k) hi
let rec lemma_get_put_self (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key:a) (value:b) (lo hi:option a) : Lemma
(requires is_cmp is_le /\ inv is_le t lo hi)
(ensures get is_le (put is_le t key value) key == Some value)
=
match t with
| Empty -> ()
| Node k v _ l r ->
if key = k then ()
else if is_le key k then
lemma_get_put_self is_le l key value lo (Some k)
else
lemma_get_put_self is_le r key value (Some k) hi
let rec lemma_get_put_other (#a:eqtype) (#b:Type) (is_le:a -> a -> bool) (t:tree a b) (key kx:a) (value:b) (lo hi:option a)
: Lemma
(requires
is_cmp is_le /\
inv is_le t lo hi /\
is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\
key =!= kx
)
(ensures get is_le (put is_le t key value) kx == get is_le t kx) | false | false | Vale.Lib.MapTree.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_get_put_other
(#a: eqtype)
(#b: Type)
(is_le: (a -> a -> bool))
(t: tree a b)
(key kx: a)
(value: b)
(lo hi: option a)
: Lemma
(requires
is_cmp is_le /\ inv is_le t lo hi /\ is_lt_option is_le lo (Some key) /\
is_lt_option is_le (Some key) hi /\ key =!= kx)
(ensures get is_le (put is_le t key value) kx == get is_le t kx) | [
"recursion"
] | Vale.Lib.MapTree.lemma_get_put_other | {
"file_name": "vale/code/lib/collections/Vale.Lib.MapTree.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
is_le: (_: a -> _: a -> Prims.bool) ->
t: Vale.Lib.MapTree.tree a b ->
key: a ->
kx: a ->
value: b ->
lo: FStar.Pervasives.Native.option a ->
hi: FStar.Pervasives.Native.option a
-> FStar.Pervasives.Lemma
(requires
Vale.Lib.MapTree.is_cmp is_le /\ Vale.Lib.MapTree.inv is_le t lo hi /\
Vale.Lib.MapTree.is_lt_option is_le lo (FStar.Pervasives.Native.Some key) /\
Vale.Lib.MapTree.is_lt_option is_le (FStar.Pervasives.Native.Some key) hi /\ ~(key == kx))
(ensures
Vale.Lib.MapTree.get is_le (Vale.Lib.MapTree.put is_le t key value) kx ==
Vale.Lib.MapTree.get is_le t kx) | {
"end_col": 58,
"end_line": 128,
"start_col": 2,
"start_line": 120
} |
Prims.Tot | val pow2_63:nat | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_63:nat = 0x8000000000000000 | val pow2_63:nat
let pow2_63:nat = | false | null | false | 0x8000000000000000 | {
"checked_file": "Vale.Curve25519.FastHybrid_helpers.fsti.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Curve25519.FastHybrid_helpers.fsti"
} | [
"total"
] | [] | [] | module Vale.Curve25519.FastHybrid_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open FStar.Calc
let int_canon = fun _ -> norm [delta; zeta; iota]; int_semiring () //; dump "Final" | false | true | Vale.Curve25519.FastHybrid_helpers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_63:nat | [] | Vale.Curve25519.FastHybrid_helpers.pow2_63 | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastHybrid_helpers.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.nat | {
"end_col": 43,
"end_line": 13,
"start_col": 25,
"start_line": 13
} |
FStar.Tactics.Effect.Tac | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int_canon = fun _ -> norm [delta; zeta; iota]; int_semiring () | let int_canon = | true | null | false | fun _ ->
norm [delta; zeta; iota];
int_semiring () | {
"checked_file": "Vale.Curve25519.FastHybrid_helpers.fsti.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Curve25519.FastHybrid_helpers.fsti"
} | [] | [
"FStar.Tactics.CanonCommSemiring.int_semiring",
"Prims.unit",
"FStar.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.zeta",
"FStar.Pervasives.iota",
"Prims.Nil"
] | [] | module Vale.Curve25519.FastHybrid_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open FStar.Calc | false | false | Vale.Curve25519.FastHybrid_helpers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int_canon : _: _ -> FStar.Tactics.Effect.Tac Prims.unit | [] | Vale.Curve25519.FastHybrid_helpers.int_canon | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastHybrid_helpers.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: _ -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 66,
"end_line": 11,
"start_col": 16,
"start_line": 11
} |
|
FStar.Pervasives.Lemma | val lemma_mul_pow256_add (x y: nat) : Lemma ((x + y * pow2_256) % prime == (x + y * 38) % prime) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mul_pow256_add (x y:nat) :
Lemma ((x + y * pow2_256) % prime == (x + y * 38) % prime)
=
assert_norm (pow2_256 % prime == 38);
() | val lemma_mul_pow256_add (x y: nat) : Lemma ((x + y * pow2_256) % prime == (x + y * 38) % prime)
let lemma_mul_pow256_add (x y: nat) : Lemma ((x + y * pow2_256) % prime == (x + y * 38) % prime) = | false | null | true | assert_norm (pow2_256 % prime == 38);
() | {
"checked_file": "Vale.Curve25519.FastHybrid_helpers.fsti.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Curve25519.FastHybrid_helpers.fsti"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Vale.Curve25519.Fast_defs.pow2_256",
"Vale.Curve25519.Fast_defs.prime",
"Prims.l_True",
"Prims.squash",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Curve25519.FastHybrid_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open FStar.Calc
let int_canon = fun _ -> norm [delta; zeta; iota]; int_semiring () //; dump "Final"
unfold let pow2_63:nat = 0x8000000000000000
let _ = assert_norm (pow2_63 == pow2 63)
let lemma_mul_pow256_add (x y:nat) :
Lemma ((x + y * pow2_256) % prime == (x + y * 38) % prime) | false | false | Vale.Curve25519.FastHybrid_helpers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mul_pow256_add (x y: nat) : Lemma ((x + y * pow2_256) % prime == (x + y * 38) % prime) | [] | Vale.Curve25519.FastHybrid_helpers.lemma_mul_pow256_add | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastHybrid_helpers.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Prims.nat -> y: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(x + y * Vale.Curve25519.Fast_defs.pow2_256) % Vale.Curve25519.Fast_defs.prime ==
(x + y * 38) % Vale.Curve25519.Fast_defs.prime) | {
"end_col": 4,
"end_line": 21,
"start_col": 2,
"start_line": 20
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y) | let inverses #a #b (f: (a -> GTot b)) (g: (b -> GTot a)) = | false | null | false | (forall x. g (f x) == x) /\ (forall y. f (g y) == y) | {
"checked_file": "LowStar.BufferView.Down.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.Down.fsti"
} | [
"total"
] | [
"Prims.l_and",
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView.Down
(**
* A "down view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.Down.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a down view requires providing a pair of mutually inverse functions
* from `a` to sequences of `b`. (e.g., from a `lbuffer u32 n` to a `lbuffer u8 (4*n)`)
*
* I.e., a down view allows "exploding" an `a` into its component `b`'s.
* In contrast, an "up view" (see LowStar.BufferView.Up) allows
* "compacting" a sequences of `a`'s into a `b`.
* (e.g., from an `lbuffer u8 (4*n)` to an `lbuffer u32 n`)
**)
open LowStar.Monotonic.Buffer
open FStar.Mul
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b)) | false | false | LowStar.BufferView.Down.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val inverses : f: (_: a -> Prims.GTot b) -> g: (_: b -> Prims.GTot a) -> Prims.logical | [] | LowStar.BufferView.Down.inverses | {
"file_name": "ulib/LowStar.BufferView.Down.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a -> Prims.GTot b) -> g: (_: b -> Prims.GTot a) -> Prims.logical | {
"end_col": 26,
"end_line": 48,
"start_col": 2,
"start_line": 47
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_buffer_t (#dest:Type) (b:buffer dest) = B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b) | let as_buffer_t (#dest: Type) (b: buffer dest) = | false | null | false | B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b) | {
"checked_file": "LowStar.BufferView.Down.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.Down.fsti"
} | [
"total"
] | [
"LowStar.BufferView.Down.buffer",
"LowStar.Monotonic.Buffer.mbuffer",
"FStar.Pervasives.__proj__Mkdtuple4__item___1",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.Down.buffer_view",
"FStar.Pervasives.__proj__Mkdtuple4__item___2",
"FStar.Pervasives.__proj__Mkdtuple4__item___3"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView.Down
(**
* A "down view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.Down.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a down view requires providing a pair of mutually inverse functions
* from `a` to sequences of `b`. (e.g., from a `lbuffer u32 n` to a `lbuffer u8 (4*n)`)
*
* I.e., a down view allows "exploding" an `a` into its component `b`'s.
* In contrast, an "up view" (see LowStar.BufferView.Up) allows
* "compacting" a sequences of `a`'s into a `b`.
* (e.g., from an `lbuffer u8 (4*n)` to an `lbuffer u32 n`)
**)
open LowStar.Monotonic.Buffer
open FStar.Mul
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps single `a`'s to an `n`-lengthed sequence of `b`s
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(a -> GTot (Seq.lseq b n)) ->
put:(Seq.lseq b n -> GTot a) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
///
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type lives in a higher universe,
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe)
let buffer (dest:Type u#a) : Type u#(max 1 a) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest) | false | false | LowStar.BufferView.Down.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_buffer_t : b: LowStar.BufferView.Down.buffer dest -> Type0 | [] | LowStar.BufferView.Down.as_buffer_t | {
"file_name": "ulib/LowStar.BufferView.Down.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.BufferView.Down.buffer dest -> Type0 | {
"end_col": 110,
"end_line": 88,
"start_col": 47,
"start_line": 88
} |
|
Prims.Tot | val buffer (dest: Type u#a) : Type u#(max 1 a) | [
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let buffer (dest:Type u#a) : Type u#(max 1 a) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest) | val buffer (dest: Type u#a) : Type u#(max 1 a)
let buffer (dest: Type u#a) : Type u#(max 1 a) = | false | null | false | (src: Type0 & rrel: B.srel src & rel: B.srel src & buffer_view src rrel rel dest) | {
"checked_file": "LowStar.BufferView.Down.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.Down.fsti"
} | [
"total"
] | [
"FStar.Pervasives.dtuple4",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.Down.buffer_view"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView.Down
(**
* A "down view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.Down.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a down view requires providing a pair of mutually inverse functions
* from `a` to sequences of `b`. (e.g., from a `lbuffer u32 n` to a `lbuffer u8 (4*n)`)
*
* I.e., a down view allows "exploding" an `a` into its component `b`'s.
* In contrast, an "up view" (see LowStar.BufferView.Up) allows
* "compacting" a sequences of `a`'s into a `b`.
* (e.g., from an `lbuffer u8 (4*n)` to an `lbuffer u32 n`)
**)
open LowStar.Monotonic.Buffer
open FStar.Mul
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps single `a`'s to an `n`-lengthed sequence of `b`s
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(a -> GTot (Seq.lseq b n)) ->
put:(Seq.lseq b n -> GTot a) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
///
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type lives in a higher universe,
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe) | false | true | LowStar.BufferView.Down.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val buffer (dest: Type u#a) : Type u#(max 1 a) | [] | LowStar.BufferView.Down.buffer | {
"file_name": "ulib/LowStar.BufferView.Down.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | dest: Type -> Type | {
"end_col": 126,
"end_line": 86,
"start_col": 48,
"start_line": 86
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let live #b h (vb:buffer b) = live h (as_buffer vb) | let live #b h (vb: buffer b) = | false | null | false | live h (as_buffer vb) | {
"checked_file": "LowStar.BufferView.Down.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.Down.fsti"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowStar.BufferView.Down.buffer",
"LowStar.Monotonic.Buffer.live",
"FStar.Pervasives.__proj__Mkdtuple4__item___1",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.Down.buffer_view",
"FStar.Pervasives.__proj__Mkdtuple4__item___2",
"FStar.Pervasives.__proj__Mkdtuple4__item___3",
"LowStar.BufferView.Down.as_buffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView.Down
(**
* A "down view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.Down.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a down view requires providing a pair of mutually inverse functions
* from `a` to sequences of `b`. (e.g., from a `lbuffer u32 n` to a `lbuffer u8 (4*n)`)
*
* I.e., a down view allows "exploding" an `a` into its component `b`'s.
* In contrast, an "up view" (see LowStar.BufferView.Up) allows
* "compacting" a sequences of `a`'s into a `b`.
* (e.g., from an `lbuffer u8 (4*n)` to an `lbuffer u32 n`)
**)
open LowStar.Monotonic.Buffer
open FStar.Mul
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps single `a`'s to an `n`-lengthed sequence of `b`s
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(a -> GTot (Seq.lseq b n)) ->
put:(Seq.lseq b n -> GTot a) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
///
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type lives in a higher universe,
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe)
let buffer (dest:Type u#a) : Type u#(max 1 a) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest)
let as_buffer_t (#dest:Type) (b:buffer dest) = B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b)
/// `mk_buffer_view`: The main constructor
val mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest)
: GTot (buffer dest)
/// `as_buffer`: Projecting the underlying B.buffer from its view
val as_buffer (#b:Type) (v:buffer b) : as_buffer_t v
/// A lemma-relating projector to constructor
val as_buffer_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest)
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
Mkdtuple4?._2 bv == rrel /\
Mkdtuple4?._3 bv == rel /\
as_buffer bv == b)
[SMTPat (as_buffer (mk_buffer_view b v))]
/// `get_view`: Projecting the view functions itself
val get_view (#b : Type) (v:buffer b) : view (Mkdtuple4?._1 v) b
/// A lemma-relating projector to constructor
val get_view_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest)
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
get_view bv == v)
[SMTPat (get_view (mk_buffer_view b v))]
/// `live h vb`: liveness of a buffer view corresponds to liveness of
/// the underlying buffer | false | false | LowStar.BufferView.Down.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val live : h: FStar.Monotonic.HyperStack.mem -> vb: LowStar.BufferView.Down.buffer b -> Type0 | [] | LowStar.BufferView.Down.live | {
"file_name": "ulib/LowStar.BufferView.Down.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | h: FStar.Monotonic.HyperStack.mem -> vb: LowStar.BufferView.Down.buffer b -> Type0 | {
"end_col": 51,
"end_line": 126,
"start_col": 30,
"start_line": 126
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modifies (#b: _)
(vb:buffer b)
(h h':HS.mem)
= B.modifies (B.loc_buffer (as_buffer vb)) h h' | let modifies (#b: _) (vb: buffer b) (h h': HS.mem) = | false | null | false | B.modifies (B.loc_buffer (as_buffer vb)) h h' | {
"checked_file": "LowStar.BufferView.Down.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.Down.fsti"
} | [
"total"
] | [
"LowStar.BufferView.Down.buffer",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Pervasives.__proj__Mkdtuple4__item___1",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.Down.buffer_view",
"FStar.Pervasives.__proj__Mkdtuple4__item___2",
"FStar.Pervasives.__proj__Mkdtuple4__item___3",
"LowStar.BufferView.Down.as_buffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView.Down
(**
* A "down view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.Down.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a down view requires providing a pair of mutually inverse functions
* from `a` to sequences of `b`. (e.g., from a `lbuffer u32 n` to a `lbuffer u8 (4*n)`)
*
* I.e., a down view allows "exploding" an `a` into its component `b`'s.
* In contrast, an "up view" (see LowStar.BufferView.Up) allows
* "compacting" a sequences of `a`'s into a `b`.
* (e.g., from an `lbuffer u8 (4*n)` to an `lbuffer u32 n`)
**)
open LowStar.Monotonic.Buffer
open FStar.Mul
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps single `a`'s to an `n`-lengthed sequence of `b`s
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(a -> GTot (Seq.lseq b n)) ->
put:(Seq.lseq b n -> GTot a) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
///
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type lives in a higher universe,
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe)
let buffer (dest:Type u#a) : Type u#(max 1 a) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest)
let as_buffer_t (#dest:Type) (b:buffer dest) = B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b)
/// `mk_buffer_view`: The main constructor
val mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest)
: GTot (buffer dest)
/// `as_buffer`: Projecting the underlying B.buffer from its view
val as_buffer (#b:Type) (v:buffer b) : as_buffer_t v
/// A lemma-relating projector to constructor
val as_buffer_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest)
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
Mkdtuple4?._2 bv == rrel /\
Mkdtuple4?._3 bv == rel /\
as_buffer bv == b)
[SMTPat (as_buffer (mk_buffer_view b v))]
/// `get_view`: Projecting the view functions itself
val get_view (#b : Type) (v:buffer b) : view (Mkdtuple4?._1 v) b
/// A lemma-relating projector to constructor
val get_view_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest)
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
get_view bv == v)
[SMTPat (get_view (mk_buffer_view b v))]
/// `live h vb`: liveness of a buffer view corresponds to liveness of
/// the underlying buffer
unfold
let live #b h (vb:buffer b) = live h (as_buffer vb)
/// `length vb`: is defined in terms of the underlying buffer
///
/// Internally, it is defined as
///
/// ```
/// length (as_buffer vb) * View?.n (get_view vb)
/// ```
///
/// However, rather than expose this definition to callers, we treat
/// length abstractly.
///
/// To reveal its definition explicitly, use the `length_eq` lemma below.
val length (#b: _) (vb:buffer b)
: GTot nat
/// `length_eq`: Reveals the definition of the `length` function
val length_eq (#b: _) (vb:buffer b)
: Lemma (length vb = B.length (as_buffer vb) * View?.n (get_view vb))
/// `indexing`
val indexing (#b: _) (vb:buffer b) (i:nat{i < length vb})
: Lemma (let n = View?.n (get_view vb) in
let vlen = length vb in
n * (i / n) < vlen /\
n * (i / n) + n <= vlen)
/// `sel h vb i` : selects element at index `i` from the buffer `vb` in heap `h`
val sel (#b: _)
(h:HS.mem)
(vb:buffer b)
(i:nat{i < length vb})
: GTot b
/// `upd h vb i x`: stores `x` at index `i` in the buffer `vb` in heap `h`
val upd (#b: _)
(h:HS.mem)
(vb:buffer b{live h vb})
(i:nat{i < length vb})
(x:b)
: GTot HS.mem
/// `sel_upd`: A classic select/update lemma for reasoning about maps
val sel_upd (#b:_)
(vb:buffer b)
(i:nat{i < length vb})
(j:nat{j < length vb})
(x:b)
(h:HS.mem{live h vb})
: Lemma (if i = j
then sel (upd h vb i x) vb j == x
else sel (upd h vb i x) vb j == sel h vb j)
[SMTPat (sel (upd h vb i x) vb j)]
val lemma_upd_with_sel (#b:_)
(vb:buffer b)
(i:nat{i < length vb})
(h:HS.mem{live h vb})
:Lemma (upd h vb i (sel h vb i) == h)
/// `modifies` on views is just defined in terms of the underlying buffer
unfold
let modifies (#b: _)
(vb:buffer b) | false | false | LowStar.BufferView.Down.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modifies : vb: LowStar.BufferView.Down.buffer b ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Type0 | [] | LowStar.BufferView.Down.modifies | {
"file_name": "ulib/LowStar.BufferView.Down.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
vb: LowStar.BufferView.Down.buffer b ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Type0 | {
"end_col": 51,
"end_line": 193,
"start_col": 6,
"start_line": 193
} |
|
Prims.Tot | val from_list_be (l: list bool) : int | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot.Properties",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "List"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let from_list_be (l:list bool) : int =
from_list_le (List.rev l) | val from_list_be (l: list bool) : int
let from_list_be (l: list bool) : int = | false | null | false | from_list_le (List.rev l) | {
"checked_file": "Vale.Lib.Lists.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Lists.fsti"
} | [
"total"
] | [
"Prims.list",
"Prims.bool",
"Vale.Lib.Lists.from_list_le",
"FStar.List.Tot.Base.rev",
"Prims.int"
] | [] | module Vale.Lib.Lists
open FStar.List.Tot
open FStar.Seq
open FStar.UInt
open FStar.Mul
module List = FStar.List.Tot
open FStar.List.Tot.Properties
val singleton_list_rev (#a:Type) (x:a) : Lemma
(List.rev [x] == [x])
val list_cons_is_append (#a:Type) (h:a) (t:list a) : Lemma
(h::t == [h] @ t)
val singleton_list_seq (#a:Type) (x:a) : Lemma
(seq_of_list [x] == create 1 x)
val list_append_length (#a:Type) (x y:list a) : Lemma
(List.length (x @ y) == List.length x + List.length y)
val list_append_index (#a:Type) (x y:list a) (i:nat) : Lemma
(requires i < List.length (x @ y))
(ensures (
let nx = List.length x in
(i >= nx ==> i - nx < List.length y) /\
List.index (x @ y) i == (if i < nx then List.index x i else List.index y (i - nx))
))
val append_list_seq (#a:Type) (x y:list a) : Lemma
(seq_of_list (x @ y) == append (seq_of_list x) (seq_of_list y))
let rec from_list_le (l:list bool) : int =
match l with
| [] -> 0
| h::t -> (if h then 1 else 0) + 2 * (from_list_le t) | false | true | Vale.Lib.Lists.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val from_list_be (l: list bool) : int | [] | Vale.Lib.Lists.from_list_be | {
"file_name": "vale/code/lib/collections/Vale.Lib.Lists.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l: Prims.list Prims.bool -> Prims.int | {
"end_col": 27,
"end_line": 39,
"start_col": 2,
"start_line": 39
} |
Prims.Tot | val from_list_le (l: list bool) : int | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot.Properties",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "List"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec from_list_le (l:list bool) : int =
match l with
| [] -> 0
| h::t -> (if h then 1 else 0) + 2 * (from_list_le t) | val from_list_le (l: list bool) : int
let rec from_list_le (l: list bool) : int = | false | null | false | match l with
| [] -> 0
| h :: t -> (if h then 1 else 0) + 2 * (from_list_le t) | {
"checked_file": "Vale.Lib.Lists.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Lists.fsti"
} | [
"total"
] | [
"Prims.list",
"Prims.bool",
"Prims.op_Addition",
"Prims.int",
"FStar.Mul.op_Star",
"Vale.Lib.Lists.from_list_le"
] | [] | module Vale.Lib.Lists
open FStar.List.Tot
open FStar.Seq
open FStar.UInt
open FStar.Mul
module List = FStar.List.Tot
open FStar.List.Tot.Properties
val singleton_list_rev (#a:Type) (x:a) : Lemma
(List.rev [x] == [x])
val list_cons_is_append (#a:Type) (h:a) (t:list a) : Lemma
(h::t == [h] @ t)
val singleton_list_seq (#a:Type) (x:a) : Lemma
(seq_of_list [x] == create 1 x)
val list_append_length (#a:Type) (x y:list a) : Lemma
(List.length (x @ y) == List.length x + List.length y)
val list_append_index (#a:Type) (x y:list a) (i:nat) : Lemma
(requires i < List.length (x @ y))
(ensures (
let nx = List.length x in
(i >= nx ==> i - nx < List.length y) /\
List.index (x @ y) i == (if i < nx then List.index x i else List.index y (i - nx))
))
val append_list_seq (#a:Type) (x y:list a) : Lemma
(seq_of_list (x @ y) == append (seq_of_list x) (seq_of_list y)) | false | true | Vale.Lib.Lists.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val from_list_le (l: list bool) : int | [
"recursion"
] | Vale.Lib.Lists.from_list_le | {
"file_name": "vale/code/lib/collections/Vale.Lib.Lists.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l: Prims.list Prims.bool -> Prims.int | {
"end_col": 55,
"end_line": 36,
"start_col": 2,
"start_line": 34
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p) | let aff_point_inv (h: mem) (p: aff_point) = | false | null | false | aff_point_inv_seq (as_seq h p) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.aff_point",
"Hacl.Impl.P256.Point.aff_point_inv_seq",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.logical"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_inv : h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.aff_point -> Prims.logical | [] | Hacl.Impl.P256.Point.aff_point_inv | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.aff_point -> Prims.logical | {
"end_col": 32,
"end_line": 46,
"start_col": 2,
"start_line": 46
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime | let aff_point_inv_seq (p: aff_point_seq) = | false | null | false | let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Hacl.Impl.P256.Point.aff_point_seq",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.P256.PointOps.prime",
"Prims.logical",
"FStar.Pervasives.Native.tuple2",
"Hacl.Impl.P256.Point.as_aff_point_nat_seq"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4) | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_inv_seq : p: Hacl.Impl.P256.Point.aff_point_seq -> Prims.logical | [] | Hacl.Impl.P256.Point.aff_point_inv_seq | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.aff_point_seq -> Prims.logical | {
"end_col": 28,
"end_line": 34,
"start_col": 41,
"start_line": 32
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point = lbuffer uint64 8ul | let aff_point = | false | null | false | lbuffer uint64 8ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point : Type0 | [] | Hacl.Impl.P256.Point.aff_point | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 34,
"end_line": 38,
"start_col": 16,
"start_line": 38
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p) | let point_inv (h: mem) (p: point) = | false | null | false | point_inv_seq (as_seq h p) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.point",
"Hacl.Impl.P256.Point.point_inv_seq",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.logical"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_inv : h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.point -> Prims.logical | [] | Hacl.Impl.P256.Point.point_inv | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.point -> Prims.logical | {
"end_col": 28,
"end_line": 93,
"start_col": 2,
"start_line": 93
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime | let point_inv_seq (p: point_seq) = | false | null | false | let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Hacl.Impl.P256.Point.point_seq",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.P256.PointOps.prime",
"Prims.logical",
"FStar.Pervasives.Native.tuple3",
"Hacl.Impl.P256.Point.as_point_nat_seq"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4) | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_inv_seq : p: Hacl.Impl.P256.Point.point_seq -> Prims.logical | [] | Hacl.Impl.P256.Point.point_inv_seq | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.point_seq -> Prims.logical | {
"end_col": 43,
"end_line": 81,
"start_col": 33,
"start_line": 79
} |
|
Prims.GTot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p) | let as_aff_point_nat (h: mem) (p: aff_point) = | false | null | false | as_aff_point_nat_seq (as_seq h p) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.aff_point",
"Hacl.Impl.P256.Point.as_aff_point_nat_seq",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"FStar.Pervasives.Native.tuple2",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_aff_point_nat : h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.aff_point
-> Prims.GTot (Prims.nat * Prims.nat) | [] | Hacl.Impl.P256.Point.as_aff_point_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.aff_point
-> Prims.GTot (Prims.nat * Prims.nat) | {
"end_col": 35,
"end_line": 42,
"start_col": 2,
"start_line": 42
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point = lbuffer uint64 12ul | let point = | false | null | false | lbuffer uint64 12ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point : Type0 | [] | Hacl.Impl.P256.Point.point | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 31,
"end_line": 85,
"start_col": 12,
"start_line": 85
} |
|
Prims.GTot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p) | let as_point_nat (h: mem) (p: point) = | false | null | false | as_point_nat_seq (as_seq h p) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.point",
"Hacl.Impl.P256.Point.as_point_nat_seq",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"FStar.Pervasives.Native.tuple3",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_point_nat : h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.point
-> Prims.GTot ((Prims.nat * Prims.nat) * Prims.nat) | [] | Hacl.Impl.P256.Point.as_point_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.point
-> Prims.GTot ((Prims.nat * Prims.nat) * Prims.nat) | {
"end_col": 31,
"end_line": 89,
"start_col": 2,
"start_line": 89
} |
|
Prims.Tot | val from_mont_point (a: tuple3 nat nat nat) : S.proj_point | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z | val from_mont_point (a: tuple3 nat nat nat) : S.proj_point
let from_mont_point (a: tuple3 nat nat nat) : S.proj_point = | false | null | false | let x, y, z = a in
SM.from_mont x, SM.from_mont y, SM.from_mont z | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"FStar.Pervasives.Native.tuple3",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple3",
"Hacl.Spec.P256.Montgomery.from_mont",
"Spec.P256.PointOps.proj_point"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0" | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val from_mont_point (a: tuple3 nat nat nat) : S.proj_point | [] | Hacl.Impl.P256.Point.from_mont_point | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: ((Prims.nat * Prims.nat) * Prims.nat) -> Spec.P256.PointOps.proj_point | {
"end_col": 67,
"end_line": 20,
"start_col": 59,
"start_line": 19
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_seq = LSeq.lseq uint64 8 | let aff_point_seq = | false | null | false | LSeq.lseq uint64 8 | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_seq : Type0 | [] | Hacl.Impl.P256.Point.aff_point_seq | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 38,
"end_line": 26,
"start_col": 20,
"start_line": 26
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_seq = LSeq.lseq uint64 12 | let point_seq = | false | null | false | LSeq.lseq uint64 12 | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_seq : Type0 | [] | Hacl.Impl.P256.Point.point_seq | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 35,
"end_line": 72,
"start_col": 16,
"start_line": 72
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4) | let as_aff_point_nat_seq (p: aff_point_seq) = | false | null | false | BD.bn_v (LSeq.sub p 0 4), BD.bn_v (LSeq.sub p 4 4) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Hacl.Impl.P256.Point.aff_point_seq",
"FStar.Pervasives.Native.Mktuple2",
"Prims.nat",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.U64",
"Lib.Sequence.sub",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8 | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_aff_point_nat_seq : p: Hacl.Impl.P256.Point.aff_point_seq -> Prims.nat * Prims.nat | [] | Hacl.Impl.P256.Point.as_aff_point_nat_seq | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.aff_point_seq -> Prims.nat * Prims.nat | {
"end_col": 26,
"end_line": 30,
"start_col": 2,
"start_line": 29
} |
|
Prims.GTot | val aff_point_y_as_nat (h: mem) (p: aff_point) : GTot nat | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul) | val aff_point_y_as_nat (h: mem) (p: aff_point) : GTot nat
let aff_point_y_as_nat (h: mem) (p: aff_point) : GTot nat = | false | null | false | as_nat h (gsub p 4ul 4ul) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.aff_point",
"Hacl.Impl.P256.Bignum.as_nat",
"Lib.Buffer.gsub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_y_as_nat (h: mem) (p: aff_point) : GTot nat | [] | Hacl.Impl.P256.Point.aff_point_y_as_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.aff_point -> Prims.GTot Prims.nat | {
"end_col": 27,
"end_line": 54,
"start_col": 2,
"start_line": 54
} |
Prims.GTot | val point_y_as_nat (h: mem) (e: point) : GTot nat | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_y_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 4ul 4ul) | val point_y_as_nat (h: mem) (e: point) : GTot nat
let point_y_as_nat (h: mem) (e: point) : GTot nat = | false | null | false | as_nat h (gsub e 4ul 4ul) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.point",
"Hacl.Impl.P256.Bignum.as_nat",
"Lib.Buffer.gsub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract
let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p)
noextract
let point_x_as_nat (h:mem) (p:point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_y_as_nat (h: mem) (e: point) : GTot nat | [] | Hacl.Impl.P256.Point.point_y_as_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> e: Hacl.Impl.P256.Point.point -> Prims.GTot Prims.nat | {
"end_col": 27,
"end_line": 101,
"start_col": 2,
"start_line": 101
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4) | let as_point_nat_seq (p: point_seq) = | false | null | false | BD.bn_v (LSeq.sub p 0 4), BD.bn_v (LSeq.sub p 4 4), BD.bn_v (LSeq.sub p 8 4) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"total"
] | [
"Hacl.Impl.P256.Point.point_seq",
"FStar.Pervasives.Native.Mktuple3",
"Prims.nat",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.U64",
"Lib.Sequence.sub",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.tuple3"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12 | false | true | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_point_nat_seq : p: Hacl.Impl.P256.Point.point_seq -> (Prims.nat * Prims.nat) * Prims.nat | [] | Hacl.Impl.P256.Point.as_point_nat_seq | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.point_seq -> (Prims.nat * Prims.nat) * Prims.nat | {
"end_col": 26,
"end_line": 77,
"start_col": 2,
"start_line": 75
} |
|
Prims.GTot | val aff_point_x_as_nat (h: mem) (p: aff_point) : GTot nat | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul) | val aff_point_x_as_nat (h: mem) (p: aff_point) : GTot nat
let aff_point_x_as_nat (h: mem) (p: aff_point) : GTot nat = | false | null | false | as_nat h (gsub p 0ul 4ul) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.aff_point",
"Hacl.Impl.P256.Bignum.as_nat",
"Lib.Buffer.gsub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_x_as_nat (h: mem) (p: aff_point) : GTot nat | [] | Hacl.Impl.P256.Point.aff_point_x_as_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.aff_point -> Prims.GTot Prims.nat | {
"end_col": 27,
"end_line": 50,
"start_col": 2,
"start_line": 50
} |
Prims.GTot | val point_x_as_nat (h: mem) (p: point) : GTot nat | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_x_as_nat (h:mem) (p:point) : GTot nat =
as_nat h (gsub p 0ul 4ul) | val point_x_as_nat (h: mem) (p: point) : GTot nat
let point_x_as_nat (h: mem) (p: point) : GTot nat = | false | null | false | as_nat h (gsub p 0ul 4ul) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.point",
"Hacl.Impl.P256.Bignum.as_nat",
"Lib.Buffer.gsub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract
let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p)
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_x_as_nat (h: mem) (p: point) : GTot nat | [] | Hacl.Impl.P256.Point.point_x_as_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.P256.Point.point -> Prims.GTot Prims.nat | {
"end_col": 27,
"end_line": 97,
"start_col": 2,
"start_line": 97
} |
Prims.GTot | val point_z_as_nat (h: mem) (e: point) : GTot nat | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_z_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 8ul 4ul) | val point_z_as_nat (h: mem) (e: point) : GTot nat
let point_z_as_nat (h: mem) (e: point) : GTot nat = | false | null | false | as_nat h (gsub e 8ul 4ul) | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.P256.Point.point",
"Hacl.Impl.P256.Bignum.as_nat",
"Lib.Buffer.gsub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.nat"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract
let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p)
noextract
let point_x_as_nat (h:mem) (p:point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let point_y_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 4ul 4ul)
noextract | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_z_as_nat (h: mem) (e: point) : GTot nat | [] | Hacl.Impl.P256.Point.point_z_as_nat | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> e: Hacl.Impl.P256.Point.point -> Prims.GTot Prims.nat | {
"end_col": 27,
"end_line": 105,
"start_col": 2,
"start_line": 105
} |
FStar.HyperStack.ST.Stack | val aff_gety (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul | val aff_gety (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
let aff_gety (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) = | true | null | false | sub p 4ul 4ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [] | [
"Hacl.Impl.P256.Point.aff_point",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.P256.Bignum.felem",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Prims.l_and",
"Prims.eq2",
"Lib.Buffer.buffer_t",
"Prims.l_or",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Lib.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Lib.IntTypes.size",
"Lib.Buffer.gsub"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p) | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_gety (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) | [] | Hacl.Impl.P256.Point.aff_gety | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.aff_point -> FStar.HyperStack.ST.Stack Hacl.Impl.P256.Bignum.felem | {
"end_col": 17,
"end_line": 66,
"start_col": 4,
"start_line": 66
} |
FStar.HyperStack.ST.Stack | val getx (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let getx (p:point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul | val getx (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
let getx (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) = | true | null | false | sub p 0ul 4ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [] | [
"Hacl.Impl.P256.Point.point",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.P256.Bignum.felem",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Prims.l_and",
"Prims.eq2",
"Lib.Buffer.buffer_t",
"Prims.l_or",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Lib.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Lib.IntTypes.size",
"Lib.Buffer.gsub"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract
let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p)
noextract
let point_x_as_nat (h:mem) (p:point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let point_y_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 4ul 4ul)
noextract
let point_z_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 8ul 4ul)
inline_for_extraction noextract
let getx (p:point) : Stack felem
(requires fun h -> live h p) | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val getx (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) | [] | Hacl.Impl.P256.Point.getx | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.point -> FStar.HyperStack.ST.Stack Hacl.Impl.P256.Bignum.felem | {
"end_col": 17,
"end_line": 112,
"start_col": 4,
"start_line": 112
} |
FStar.HyperStack.ST.Stack | val getz (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1) | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let getz (p:point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1)
= sub p 8ul 4ul | val getz (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1)
let getz (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1) = | true | null | false | sub p 8ul 4ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [] | [
"Hacl.Impl.P256.Point.point",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.P256.Bignum.felem",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Prims.l_and",
"Prims.eq2",
"Lib.Buffer.buffer_t",
"Prims.l_or",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Lib.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Lib.IntTypes.size",
"Lib.Buffer.gsub"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract
let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p)
noextract
let point_x_as_nat (h:mem) (p:point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let point_y_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 4ul 4ul)
noextract
let point_z_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 8ul 4ul)
inline_for_extraction noextract
let getx (p:point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let gety (p:point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
inline_for_extraction noextract
let getz (p:point) : Stack felem
(requires fun h -> live h p) | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val getz (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 8ul 4ul /\ h0 == h1) | [] | Hacl.Impl.P256.Point.getz | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.point -> FStar.HyperStack.ST.Stack Hacl.Impl.P256.Bignum.felem | {
"end_col": 17,
"end_line": 124,
"start_col": 4,
"start_line": 124
} |
FStar.HyperStack.ST.Stack | val aff_getx (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul | val aff_getx (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
let aff_getx (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) = | true | null | false | sub p 0ul 4ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [] | [
"Hacl.Impl.P256.Point.aff_point",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.P256.Bignum.felem",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Prims.l_and",
"Prims.eq2",
"Lib.Buffer.buffer_t",
"Prims.l_or",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Lib.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Lib.IntTypes.size",
"Lib.Buffer.gsub"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p) | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_getx (p: aff_point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1) | [] | Hacl.Impl.P256.Point.aff_getx | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.aff_point -> FStar.HyperStack.ST.Stack Hacl.Impl.P256.Bignum.felem | {
"end_col": 17,
"end_line": 60,
"start_col": 4,
"start_line": 60
} |
FStar.HyperStack.ST.Stack | val gety (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gety (p:point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul | val gety (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
let gety (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) = | true | null | false | sub p 4ul 4ul | {
"checked_file": "Hacl.Impl.P256.Point.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Point.fsti"
} | [] | [
"Hacl.Impl.P256.Point.point",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.P256.Bignum.felem",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Prims.l_and",
"Prims.eq2",
"Lib.Buffer.buffer_t",
"Prims.l_or",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Lib.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Lib.IntTypes.size",
"Lib.Buffer.gsub"
] | [] | module Hacl.Impl.P256.Point
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module BD = Hacl.Spec.Bignum.Definitions
module LSeq = Lib.Sequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
let from_mont_point (a:tuple3 nat nat nat) : S.proj_point =
let x, y, z = a in SM.from_mont x, SM.from_mont y, SM.from_mont z
/// Affine coordinates
inline_for_extraction noextract
let aff_point_seq = LSeq.lseq uint64 8
let as_aff_point_nat_seq (p:aff_point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4)
let aff_point_inv_seq (p:aff_point_seq) =
let x, y = as_aff_point_nat_seq p in
x < S.prime /\ y < S.prime
inline_for_extraction noextract
let aff_point = lbuffer uint64 8ul
noextract
let as_aff_point_nat (h:mem) (p:aff_point) =
as_aff_point_nat_seq (as_seq h p)
noextract
let aff_point_inv (h:mem) (p:aff_point) =
aff_point_inv_seq (as_seq h p)
noextract
let aff_point_x_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let aff_point_y_as_nat (h:mem) (p:aff_point) : GTot nat =
as_nat h (gsub p 4ul 4ul)
inline_for_extraction noextract
let aff_getx (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let aff_gety (p:aff_point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1)
= sub p 4ul 4ul
/// Projective coordinates
inline_for_extraction noextract
let point_seq = LSeq.lseq uint64 12
let as_point_nat_seq (p:point_seq) =
BD.bn_v (LSeq.sub p 0 4),
BD.bn_v (LSeq.sub p 4 4),
BD.bn_v (LSeq.sub p 8 4)
let point_inv_seq (p:point_seq) =
let x, y, z = as_point_nat_seq p in
x < S.prime /\ y < S.prime /\ z < S.prime
inline_for_extraction noextract
let point = lbuffer uint64 12ul
noextract
let as_point_nat (h:mem) (p:point) =
as_point_nat_seq (as_seq h p)
noextract
let point_inv (h:mem) (p:point) =
point_inv_seq (as_seq h p)
noextract
let point_x_as_nat (h:mem) (p:point) : GTot nat =
as_nat h (gsub p 0ul 4ul)
noextract
let point_y_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 4ul 4ul)
noextract
let point_z_as_nat (h:mem) (e:point) : GTot nat =
as_nat h (gsub e 8ul 4ul)
inline_for_extraction noextract
let getx (p:point) : Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 0ul 4ul /\ h0 == h1)
= sub p 0ul 4ul
inline_for_extraction noextract
let gety (p:point) : Stack felem
(requires fun h -> live h p) | false | false | Hacl.Impl.P256.Point.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gety (p: point)
: Stack felem
(requires fun h -> live h p)
(ensures fun h0 f h1 -> f == gsub p 4ul 4ul /\ h0 == h1) | [] | Hacl.Impl.P256.Point.gety | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Point.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.P256.Point.point -> FStar.HyperStack.ST.Stack Hacl.Impl.P256.Bignum.felem | {
"end_col": 17,
"end_line": 118,
"start_col": 4,
"start_line": 118
} |
Prims.GTot | val withlocal_soundness
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_WithLocal? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c)) | [
{
"abbrev": true,
"full_module": "Pulse.Steel.Wrapper.Typing",
"short_module": "WT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let withlocal_soundness #g #t #c d soundness =
let T_WithLocal _ init body init_t c x init_typing init_t_typing c_typing body_typing = d in
let CT_ST _ st st_typing = c_typing in
let rg = elab_env g in
let ru = comp_u c in
let ra = elab_term init_t in
let rinit = elab_term init in
let rpre = elab_term (comp_pre c) in
let rret_t = elab_term (comp_res c) in
let rpost = elab_term (comp_post c) in
let rbody = elab_st_typing body_typing in
let a_typing = tot_typing_soundness init_t_typing in
let rinit_typing = tot_typing_soundness init_typing in
let cres_typing, cpre_typing, cpost_typing =
Pulse.Soundness.Comp.stc_soundness st_typing in
let pre_typing = cpre_typing in
let ret_t_typing = cres_typing in
let post_typing = cpost_typing in
elab_push_binding g x (mk_array init_t);
let rbody_typing = soundness _ _ _ body_typing in
WT.with_local_typing
#rg
#ru
#ra
#rinit
#rpre
#rret_t
#rpost
#rbody
x
a_typing
rinit_typing
pre_typing
ret_t_typing
post_typing
rbody_typing | val withlocal_soundness
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_WithLocal? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c))
let withlocal_soundness #g #t #c d soundness = | false | null | false | let T_WithLocal _ init body init_t c x init_typing init_t_typing c_typing body_typing = d in
let CT_ST _ st st_typing = c_typing in
let rg = elab_env g in
let ru = comp_u c in
let ra = elab_term init_t in
let rinit = elab_term init in
let rpre = elab_term (comp_pre c) in
let rret_t = elab_term (comp_res c) in
let rpost = elab_term (comp_post c) in
let rbody = elab_st_typing body_typing in
let a_typing = tot_typing_soundness init_t_typing in
let rinit_typing = tot_typing_soundness init_typing in
let cres_typing, cpre_typing, cpost_typing = Pulse.Soundness.Comp.stc_soundness st_typing in
let pre_typing = cpre_typing in
let ret_t_typing = cres_typing in
let post_typing = cpost_typing in
elab_push_binding g x (mk_array init_t);
let rbody_typing = soundness _ _ _ body_typing in
WT.with_local_typing #rg #ru #ra #rinit #rpre #rret_t #rpost #rbody x a_typing rinit_typing
pre_typing ret_t_typing post_typing rbody_typing | {
"checked_file": "Pulse.Soundness.WithLocal.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Steel.Wrapper.Typing.fsti.checked",
"Pulse.Soundness.Comp.fsti.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Core.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.WithLocal.fst"
} | [
"sometrivial"
] | [
"Pulse.Soundness.Common.stt_env",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_typing",
"Prims.b2t",
"Pulse.Typing.uu___is_T_WithLocal",
"Pulse.Soundness.Common.soundness_t",
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.uu___is_C_ST",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars_st",
"Pulse.Typing.tot_typing",
"Pulse.Typing.universe_of",
"Pulse.Syntax.Pure.u0",
"Pulse.Typing.comp_typing",
"Pulse.Syntax.Base.comp_u",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Typing.mk_ref",
"Pulse.Syntax.Naming.open_st_term_nv",
"Pulse.Syntax.Base.v_as_nv",
"Pulse.Typing.comp_withlocal_body",
"Pulse.Syntax.Base.st_comp",
"Pulse.Typing.st_comp_typing",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"FStar.Reflection.Typing.tm_type",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__u",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Reflection.Util.vprop_tm",
"Pulse.Reflection.Util.mk_abs",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Pulse.Soundness.Common.post1_type_bind",
"Pulse.Steel.Wrapper.Typing.with_local_typing",
"Pulse.Elaborate.Core.elab_st_typing",
"Pulse.Elaborate.Pure.elab_comp",
"Prims.unit",
"Pulse.Typing.elab_push_binding",
"Pulse.Typing.mk_array",
"FStar.Pervasives.Native.tuple3",
"Pulse.Soundness.Comp.stc_soundness",
"Pulse.Soundness.Common.tot_typing_soundness",
"Pulse.Syntax.Pure.tm_type",
"FStar.Reflection.Types.term",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.comp_res",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Syntax.Base.universe",
"FStar.Reflection.Types.env"
] | [] | module Pulse.Soundness.WithLocal
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Typing
open Pulse.Elaborate.Core
open Pulse.Elaborate
open Pulse.Soundness.Common
module WT = Pulse.Steel.Wrapper.Typing | false | false | Pulse.Soundness.WithLocal.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 8,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val withlocal_soundness
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_WithLocal? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c)) | [] | Pulse.Soundness.WithLocal.withlocal_soundness | {
"file_name": "lib/steel/pulse/Pulse.Soundness.WithLocal.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.st_typing g t c {T_WithLocal? d} -> soundness: Pulse.Soundness.Common.soundness_t d
-> Prims.GTot
(FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g)
(Pulse.Elaborate.Core.elab_st_typing d)
(Pulse.Elaborate.Pure.elab_comp c)) | {
"end_col": 16,
"end_line": 53,
"start_col": 46,
"start_line": 13
} |
Prims.Tot | val has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs | val has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop = | false | null | false | forall x. f x == x `FLT.mem` xs | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater",
"Prims.bool",
"Prims.list",
"Prims.l_Forall",
"Prims.eq2",
"FStar.List.Tot.Base.mem",
"Prims.prop"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a) : prop | [] | FStar.FiniteSet.Base.has_elements | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: a ^-> Prims.bool -> xs: Prims.list a -> Prims.prop | {
"end_col": 33,
"end_line": 43,
"start_col": 2,
"start_line": 43
} |
Prims.GTot | val cardinality (#a: eqtype) (s: set a)
: GTot nat | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s) | val cardinality (#a: eqtype) (s: set a)
: GTot nat
let cardinality (#a: eqtype) (s: set a) : GTot nat = | false | null | false | FLT.length (set_as_list s) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"sometrivial"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.List.Tot.Base.length",
"FStar.FiniteSet.Base.set_as_list",
"Prims.nat"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"] | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cardinality (#a: eqtype) (s: set a)
: GTot nat | [] | FStar.FiniteSet.Base.cardinality | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.FiniteSet.Base.set a -> Prims.GTot Prims.nat | {
"end_col": 28,
"end_line": 68,
"start_col": 2,
"start_line": 68
} |
Prims.Tot | val mem (#a: eqtype) (x: a) (s: set a)
: bool | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x | val mem (#a: eqtype) (x: a) (s: set a)
: bool
let mem (#a: eqtype) (x: a) (s: set a) : bool = | false | null | false | s x | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.bool"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`: | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mem (#a: eqtype) (x: a) (s: set a)
: bool | [] | FStar.FiniteSet.Base.mem | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> s: FStar.FiniteSet.Base.set a -> Prims.bool | {
"end_col": 5,
"end_line": 51,
"start_col": 2,
"start_line": 51
} |
Prims.Tot | val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true) | val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
let subset (#a: eqtype) (s1 s2: set a) : Type0 = | false | null | false | forall x. (s1 x = true) ==> (s2 x = true) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0 | [] | FStar.FiniteSet.Base.subset | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> Type0 | {
"end_col": 43,
"end_line": 138,
"start_col": 2,
"start_line": 138
} |
Prims.Tot | val singleton (#a: eqtype) (x: a)
: set a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset | val singleton (#a: eqtype) (x: a)
: set a
let singleton (#a: eqtype) (x: a) : set a = | false | null | false | insert x emptyset | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.insert",
"FStar.FiniteSet.Base.emptyset",
"FStar.FiniteSet.Base.set"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val singleton (#a: eqtype) (x: a)
: set a | [] | FStar.FiniteSet.Base.singleton | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> FStar.FiniteSet.Base.set a | {
"end_col": 19,
"end_line": 93,
"start_col": 2,
"start_line": 93
} |
Prims.Tot | val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2 | val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
let equal (#a: eqtype) (s1 s2: set a) : Type0 = | false | null | false | feq s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FunctionalExtensionality.feq",
"Prims.bool"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0 | [] | FStar.FiniteSet.Base.equal | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> Type0 | {
"end_col": 11,
"end_line": 145,
"start_col": 2,
"start_line": 145
} |
Prims.Tot | val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) | val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
let union (#a: eqtype) (s1 s2: set a) : (set a) = | false | null | false | intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.intro_set",
"FStar.FunctionalExtensionality.on_dom",
"Prims.bool",
"Prims.op_BarBar",
"FStar.Ghost.hide",
"Prims.list",
"FStar.FiniteSet.Base.union_lists",
"FStar.FiniteSet.Base.set_as_list"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a) | [] | FStar.FiniteSet.Base.union | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a | {
"end_col": 94,
"end_line": 105,
"start_col": 2,
"start_line": 105
} |
Prims.GTot | val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s)) | val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
let set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a {list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) = | false | null | false | remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a)
(fun xs -> forall x. FLT.mem x xs = mem x s)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"sometrivial"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.remove_repeats",
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.list",
"Prims.l_Forall",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.List.Tot.Base.mem",
"FStar.FiniteSet.Base.mem",
"Prims.prop",
"Prims.l_and",
"FStar.FiniteSet.Base.list_nonrepeating"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) | [] | FStar.FiniteSet.Base.set_as_list | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.FiniteSet.Base.set a
-> Prims.GTot
(xs:
Prims.list a
{ FStar.FiniteSet.Base.list_nonrepeating xs /\
(forall (x: a). FStar.List.Tot.Base.mem x xs = FStar.FiniteSet.Base.mem x s) }) | {
"end_col": 129,
"end_line": 64,
"start_col": 2,
"start_line": 64
} |
Prims.Tot | val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2)) | val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
let difference (#a: eqtype) (s1 s2: set a) : set a = | false | null | false | intro_set (on_dom a (fun x -> s1 x && not (s2 x)))
(difference_lists (set_as_list s1) (set_as_list s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.intro_set",
"FStar.FunctionalExtensionality.on_dom",
"Prims.bool",
"Prims.op_AmpAmp",
"Prims.op_Negation",
"FStar.Ghost.hide",
"Prims.list",
"FStar.FiniteSet.Base.difference_lists",
"FStar.FiniteSet.Base.set_as_list"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a | [] | FStar.FiniteSet.Base.difference | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a | {
"end_col": 105,
"end_line": 131,
"start_col": 2,
"start_line": 131
} |
Prims.Pure | val intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f | val intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) = | false | null | false | Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [] | [
"Prims.eqtype",
"FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater",
"Prims.bool",
"FStar.Ghost.erased",
"Prims.list",
"Prims.unit",
"FStar.Classical.exists_intro",
"FStar.FiniteSet.Base.has_elements",
"FStar.Ghost.reveal",
"FStar.FiniteSet.Base.set",
"Prims.l_True"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a) (requires f `has_elements` xs) (ensures fun _ -> True) | [] | FStar.FiniteSet.Base.intro_set | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: a ^-> Prims.bool -> xs: FStar.Ghost.erased (Prims.list a)
-> Prims.Pure (FStar.FiniteSet.Base.set a) | {
"end_col": 3,
"end_line": 75,
"start_col": 2,
"start_line": 74
} |
Prims.Tot | val insert (#a: eqtype) (x: a) (s: set a)
: set a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) | val insert (#a: eqtype) (x: a) (s: set a)
: set a
let insert (#a: eqtype) (x: a) (s: set a) : set a = | false | null | false | intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.intro_set",
"FStar.FunctionalExtensionality.on_dom",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"FStar.Ghost.hide",
"Prims.list",
"Prims.Cons",
"FStar.FiniteSet.Base.set_as_list"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert (#a: eqtype) (x: a) (s: set a)
: set a | [] | FStar.FiniteSet.Base.insert | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> s: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a | {
"end_col": 70,
"end_line": 86,
"start_col": 2,
"start_line": 86
} |
Prims.GTot | val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s) | val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
let choose (#a: eqtype) (s: set a {exists x. mem x s}) : GTot (x: a{mem x s}) = | false | null | false | Cons?.hd (set_as_list s) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"sometrivial"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_Exists",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.__proj__Cons__item__hd",
"FStar.FiniteSet.Base.set_as_list"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s}) | [] | FStar.FiniteSet.Base.choose | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.FiniteSet.Base.set a {exists (x: a). FStar.FiniteSet.Base.mem x s}
-> Prims.GTot (x: a{FStar.FiniteSet.Base.mem x s}) | {
"end_col": 26,
"end_line": 159,
"start_col": 2,
"start_line": 159
} |
Prims.Tot | val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) | val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
let intersection (#a: eqtype) (s1 s2: set a) : set a = | false | null | false | intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.intro_set",
"FStar.FunctionalExtensionality.on_dom",
"Prims.bool",
"Prims.op_AmpAmp",
"FStar.Ghost.hide",
"Prims.list",
"FStar.FiniteSet.Base.intersect_lists",
"FStar.FiniteSet.Base.set_as_list"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a | [] | FStar.FiniteSet.Base.intersection | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a | {
"end_col": 98,
"end_line": 118,
"start_col": 2,
"start_line": 118
} |
Prims.Tot | val remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl' | val remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)})
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) = | false | null | false | match xs with
| [] -> []
| hd :: tl ->
let tl' = remove_repeats tl in
if FLT.mem hd tl then tl' else hd :: tl' | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.list",
"Prims.Nil",
"FStar.List.Tot.Base.mem",
"Prims.bool",
"Prims.Cons",
"Prims.l_and",
"Prims.b2t",
"FStar.FiniteSet.Base.list_nonrepeating",
"Prims.l_Forall",
"Prims.l_iff",
"FStar.FiniteSet.Base.remove_repeats"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a {list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) | [
"recursion"
] | FStar.FiniteSet.Base.remove_repeats | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xs: Prims.list a
-> ys:
Prims.list a
{ FStar.FiniteSet.Base.list_nonrepeating ys /\
(forall (y: a). FStar.List.Tot.Base.mem y ys <==> FStar.List.Tot.Base.mem y xs) } | {
"end_col": 87,
"end_line": 61,
"start_col": 2,
"start_line": 59
} |
Prims.Tot | val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x) | val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
let disjoint (#a: eqtype) (s1 s2: set a) : Type0 = | false | null | false | forall x. not (s1 x && s2 x) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_Forall",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_AmpAmp"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0 | [] | FStar.FiniteSet.Base.disjoint | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> Type0 | {
"end_col": 30,
"end_line": 152,
"start_col": 2,
"start_line": 152
} |
Prims.Tot | val intersect_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs' | val intersect_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys})
let rec intersect_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) = | false | null | false | match xs with
| [] -> []
| hd :: tl ->
let zs' = intersect_lists tl ys in
if FLT.mem hd ys then hd :: zs' else zs' | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.list",
"Prims.Nil",
"FStar.List.Tot.Base.mem",
"Prims.Cons",
"Prims.bool",
"Prims.l_Forall",
"Prims.l_iff",
"Prims.b2t",
"Prims.l_and",
"FStar.FiniteSet.Base.intersect_lists"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersect_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) | [
"recursion"
] | FStar.FiniteSet.Base.intersect_lists | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xs: Prims.list a -> ys: Prims.list a
-> zs:
Prims.list a
{ forall (z: a).
FStar.List.Tot.Base.mem z zs <==>
FStar.List.Tot.Base.mem z xs /\ FStar.List.Tot.Base.mem z ys } | {
"end_col": 91,
"end_line": 115,
"start_col": 2,
"start_line": 113
} |
Prims.Tot | val emptyset (#a: eqtype)
: set a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) [] | val emptyset (#a: eqtype)
: set a
let emptyset (#a: eqtype) : set a = | false | null | false | intro_set (on_dom a (fun _ -> false)) [] | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.intro_set",
"FStar.FunctionalExtensionality.on_dom",
"Prims.bool",
"FStar.Ghost.hide",
"Prims.list",
"Prims.Nil",
"FStar.FiniteSet.Base.set"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`: | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val emptyset (#a: eqtype)
: set a | [] | FStar.FiniteSet.Base.emptyset | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.FiniteSet.Base.set a | {
"end_col": 75,
"end_line": 79,
"start_col": 35,
"start_line": 79
} |
FStar.Pervasives.Lemma | val intersection_cardinality_lemma: Prims.unit -> Lemma (intersection_cardinality_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2 | val intersection_cardinality_lemma: Prims.unit -> Lemma (intersection_cardinality_fact)
let intersection_cardinality_lemma () : Lemma (intersection_cardinality_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . cardinality (union s1 s2) +
cardinality (intersection s1 s2) =
cardinality s1 + cardinality s2
with intersection_cardinality_helper a s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.union",
"FStar.FiniteSet.Base.intersection",
"FStar.FiniteSet.Base.intersection_cardinality_helper",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.intersection_cardinality_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_cardinality_lemma: Prims.unit -> Lemma (intersection_cardinality_fact) | [] | FStar.FiniteSet.Base.intersection_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.intersection_cardinality_fact) | {
"end_col": 43,
"end_line": 345,
"start_col": 2,
"start_line": 342
} |
FStar.Pervasives.Lemma | val remove_insert_lemma: Prims.unit -> Lemma (remove_insert_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let remove_insert_lemma ()
: Lemma (remove_insert_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = false ==> remove x (insert x s) == s
with introduce mem x s = false ==> remove x (insert x s) == s
with _. remove_insert_helper a x s | val remove_insert_lemma: Prims.unit -> Lemma (remove_insert_fact)
let remove_insert_lemma () : Lemma (remove_insert_fact) = | false | null | true | introduce forall (a: eqtype) (x: a) (s: set a) . mem x s = false ==> remove x (insert x s) == s
with introduce mem x s = false ==> remove x (insert x s) == s
with _. remove_insert_helper a x s | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.FiniteSet.Base.mem",
"Prims.eq2",
"FStar.FiniteSet.Base.remove",
"FStar.FiniteSet.Base.insert",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"FStar.FiniteSet.Base.remove_insert_helper",
"Prims.l_True",
"FStar.FiniteSet.Base.remove_insert_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s)))
let insert_remove_lemma ()
: Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s
with
introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s
let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false)
(ensures remove x (insert x s) == s) =
assert (feq s (remove x (insert x s)))
let remove_insert_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val remove_insert_lemma: Prims.unit -> Lemma (remove_insert_fact) | [] | FStar.FiniteSet.Base.remove_insert_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.remove_insert_fact) | {
"end_col": 36,
"end_line": 431,
"start_col": 2,
"start_line": 429
} |
FStar.Pervasives.Lemma | val subset_lemma: Prims.unit -> Lemma (subset_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2 | val subset_lemma: Prims.unit -> Lemma (subset_fact)
let subset_lemma () : Lemma (subset_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . subset s1 s2 <==>
(forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"FStar.FiniteSet.Base.subset",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.subset_helper",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.subset_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subset_lemma: Prims.unit -> Lemma (subset_fact) | [] | FStar.FiniteSet.Base.subset_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.subset_fact) | {
"end_col": 28,
"end_line": 381,
"start_col": 2,
"start_line": 380
} |
FStar.Pervasives.Lemma | val difference_cardinality_lemma: Prims.unit -> Lemma (difference_cardinality_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2 | val difference_cardinality_lemma: Prims.unit -> Lemma (difference_cardinality_fact)
let difference_cardinality_lemma () : Lemma (difference_cardinality_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . cardinality (difference s1 s2) +
cardinality (difference s2 s1) +
cardinality (intersection s1 s2) =
cardinality (union s1 s2) /\
cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with difference_cardinality_helper a s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.intersection",
"FStar.FiniteSet.Base.union",
"Prims.op_Subtraction",
"FStar.FiniteSet.Base.difference_cardinality_helper",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.difference_cardinality_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val difference_cardinality_lemma: Prims.unit -> Lemma (difference_cardinality_fact) | [] | FStar.FiniteSet.Base.difference_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.difference_cardinality_fact) | {
"end_col": 41,
"end_line": 369,
"start_col": 2,
"start_line": 364
} |
FStar.Pervasives.Lemma | val all_finite_set_facts_lemma : unit -> Lemma (all_finite_set_facts) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let all_finite_set_facts_lemma () : Lemma (all_finite_set_facts) =
empty_set_contains_no_elements_lemma ();
length_zero_lemma ();
singleton_contains_argument_lemma ();
singleton_contains_lemma ();
singleton_cardinality_lemma ();
insert_lemma ();
insert_contains_argument_lemma ();
insert_contains_lemma ();
insert_member_cardinality_lemma ();
insert_nonmember_cardinality_lemma ();
union_contains_lemma ();
union_contains_element_from_first_argument_lemma ();
union_contains_element_from_second_argument_lemma ();
union_of_disjoint_lemma ();
intersection_contains_lemma ();
union_idempotent_right_lemma ();
union_idempotent_left_lemma ();
intersection_idempotent_right_lemma ();
intersection_idempotent_left_lemma ();
intersection_cardinality_lemma ();
difference_contains_lemma ();
difference_doesnt_include_lemma ();
difference_cardinality_lemma ();
subset_lemma ();
equal_lemma ();
equal_extensionality_lemma ();
disjoint_lemma ();
insert_remove_lemma ();
remove_insert_lemma ();
set_as_list_cardinality_lemma () | val all_finite_set_facts_lemma : unit -> Lemma (all_finite_set_facts)
let all_finite_set_facts_lemma () : Lemma (all_finite_set_facts) = | false | null | true | empty_set_contains_no_elements_lemma ();
length_zero_lemma ();
singleton_contains_argument_lemma ();
singleton_contains_lemma ();
singleton_cardinality_lemma ();
insert_lemma ();
insert_contains_argument_lemma ();
insert_contains_lemma ();
insert_member_cardinality_lemma ();
insert_nonmember_cardinality_lemma ();
union_contains_lemma ();
union_contains_element_from_first_argument_lemma ();
union_contains_element_from_second_argument_lemma ();
union_of_disjoint_lemma ();
intersection_contains_lemma ();
union_idempotent_right_lemma ();
union_idempotent_left_lemma ();
intersection_idempotent_right_lemma ();
intersection_idempotent_left_lemma ();
intersection_cardinality_lemma ();
difference_contains_lemma ();
difference_doesnt_include_lemma ();
difference_cardinality_lemma ();
subset_lemma ();
equal_lemma ();
equal_extensionality_lemma ();
disjoint_lemma ();
insert_remove_lemma ();
remove_insert_lemma ();
set_as_list_cardinality_lemma () | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.FiniteSet.Base.set_as_list_cardinality_lemma",
"FStar.FiniteSet.Base.remove_insert_lemma",
"FStar.FiniteSet.Base.insert_remove_lemma",
"FStar.FiniteSet.Base.disjoint_lemma",
"FStar.FiniteSet.Base.equal_extensionality_lemma",
"FStar.FiniteSet.Base.equal_lemma",
"FStar.FiniteSet.Base.subset_lemma",
"FStar.FiniteSet.Base.difference_cardinality_lemma",
"FStar.FiniteSet.Base.difference_doesnt_include_lemma",
"FStar.FiniteSet.Base.difference_contains_lemma",
"FStar.FiniteSet.Base.intersection_cardinality_lemma",
"FStar.FiniteSet.Base.intersection_idempotent_left_lemma",
"FStar.FiniteSet.Base.intersection_idempotent_right_lemma",
"FStar.FiniteSet.Base.union_idempotent_left_lemma",
"FStar.FiniteSet.Base.union_idempotent_right_lemma",
"FStar.FiniteSet.Base.intersection_contains_lemma",
"FStar.FiniteSet.Base.union_of_disjoint_lemma",
"FStar.FiniteSet.Base.union_contains_element_from_second_argument_lemma",
"FStar.FiniteSet.Base.union_contains_element_from_first_argument_lemma",
"FStar.FiniteSet.Base.union_contains_lemma",
"FStar.FiniteSet.Base.insert_nonmember_cardinality_lemma",
"FStar.FiniteSet.Base.insert_member_cardinality_lemma",
"FStar.FiniteSet.Base.insert_contains_lemma",
"FStar.FiniteSet.Base.insert_contains_argument_lemma",
"FStar.FiniteSet.Base.insert_lemma",
"FStar.FiniteSet.Base.singleton_cardinality_lemma",
"FStar.FiniteSet.Base.singleton_contains_lemma",
"FStar.FiniteSet.Base.singleton_contains_argument_lemma",
"FStar.FiniteSet.Base.length_zero_lemma",
"FStar.FiniteSet.Base.empty_set_contains_no_elements_lemma",
"Prims.l_True",
"Prims.squash",
"FStar.FiniteSet.Base.all_finite_set_facts",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s)))
let insert_remove_lemma ()
: Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s
with
introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s
let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false)
(ensures remove x (insert x s) == s) =
assert (feq s (remove x (insert x s)))
let remove_insert_lemma ()
: Lemma (remove_insert_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = false ==> remove x (insert x s) == s
with introduce mem x s = false ==> remove x (insert x s) == s
with _. remove_insert_helper a x s
let set_as_list_cardinality_lemma ()
: Lemma (set_as_list_cardinality_fact) =
introduce forall (a: eqtype) (s: set a). FLT.length (set_as_list s) = cardinality s
with reveal_opaque (`%cardinality) (cardinality #a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val all_finite_set_facts_lemma : unit -> Lemma (all_finite_set_facts) | [] | FStar.FiniteSet.Base.all_finite_set_facts_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.all_finite_set_facts) | {
"end_col": 34,
"end_line": 468,
"start_col": 2,
"start_line": 439
} |
FStar.Pervasives.Lemma | val insert_member_cardinality_lemma: Prims.unit -> Lemma (insert_member_cardinality_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
) | val insert_member_cardinality_lemma: Prims.unit -> Lemma (insert_member_cardinality_fact)
let insert_member_cardinality_lemma () : Lemma (insert_member_cardinality_fact) = | false | null | true | introduce forall (a: eqtype) (s: set a) (x: a) . mem x s ==>
cardinality (insert x s) = cardinality s
with introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.op_Equality",
"Prims.nat",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.insert",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length",
"FStar.FiniteSet.Base.set_as_list",
"FStar.Pervasives.reveal_opaque",
"Prims.l_True",
"FStar.FiniteSet.Base.insert_member_cardinality_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_member_cardinality_lemma: Prims.unit -> Lemma (insert_member_cardinality_fact) | [] | FStar.FiniteSet.Base.insert_member_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit
-> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.insert_member_cardinality_fact) | {
"end_col": 5,
"end_line": 242,
"start_col": 2,
"start_line": 236
} |
FStar.Pervasives.Lemma | val union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2)) | val union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) = | false | null | true | reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1)
(set_as_list s2)
(set_as_list (union s1 s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.union_of_disjoint_nonrepeating_lists_length_lemma",
"FStar.FiniteSet.Base.set_as_list",
"FStar.FiniteSet.Base.union",
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"Prims.nat",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.disjoint",
"Prims.squash",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) | [] | FStar.FiniteSet.Base.union_of_disjoint_sets_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.disjoint s1 s2)
(ensures
FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.union s1 s2) =
FStar.FiniteSet.Base.cardinality s1 + FStar.FiniteSet.Base.cardinality s2) | {
"end_col": 113,
"end_line": 315,
"start_col": 2,
"start_line": 314
} |
Prims.Tot | val remove_from_nonrepeating_list
(#a: eqtype)
(x: a)
(xs: list a {FLT.mem x xs /\ list_nonrepeating xs})
: (xs':
list a
{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\
(forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) }) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) | val remove_from_nonrepeating_list
(#a: eqtype)
(x: a)
(xs: list a {FLT.mem x xs /\ list_nonrepeating xs})
: (xs':
list a
{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\
(forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) })
let rec remove_from_nonrepeating_list
(#a: eqtype)
(x: a)
(xs: list a {FLT.mem x xs /\ list_nonrepeating xs})
: (xs':
list a
{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\
(forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) }) = | false | null | false | match xs with | hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.list",
"Prims.l_and",
"Prims.b2t",
"FStar.List.Tot.Base.mem",
"FStar.FiniteSet.Base.list_nonrepeating",
"Prims.op_Equality",
"Prims.bool",
"Prims.Cons",
"FStar.FiniteSet.Base.remove_from_nonrepeating_list",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.op_Subtraction",
"Prims.l_Forall",
"Prims.l_iff",
"Prims.op_disEquality"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1 | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val remove_from_nonrepeating_list
(#a: eqtype)
(x: a)
(xs: list a {FLT.mem x xs /\ list_nonrepeating xs})
: (xs':
list a
{ list_nonrepeating xs' /\ FLT.length xs' = FLT.length xs - 1 /\
(forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x) }) | [
"recursion"
] | FStar.FiniteSet.Base.remove_from_nonrepeating_list | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> xs: Prims.list a {FStar.List.Tot.Base.mem x xs /\ FStar.FiniteSet.Base.list_nonrepeating xs}
-> xs':
Prims.list a
{ FStar.FiniteSet.Base.list_nonrepeating xs' /\
FStar.List.Tot.Base.length xs' = FStar.List.Tot.Base.length xs - 1 /\
(forall (y: a). FStar.List.Tot.Base.mem y xs' <==> FStar.List.Tot.Base.mem y xs /\ y <> x) } | {
"end_col": 81,
"end_line": 225,
"start_col": 2,
"start_line": 224
} |
FStar.Pervasives.Lemma | val union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures
cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 | val union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures
cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3)
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures
cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) = | false | null | true | union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.union_of_disjoint_sets_cardinality_lemma",
"FStar.FiniteSet.Base.union",
"Prims.unit",
"Prims.l_and",
"FStar.FiniteSet.Base.disjoint",
"Prims.squash",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1 s2 s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures
cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) | [] | FStar.FiniteSet.Base.union_of_three_disjoint_sets_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a -> s3: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma
(requires
FStar.FiniteSet.Base.disjoint s1 s2 /\ FStar.FiniteSet.Base.disjoint s2 s3 /\
FStar.FiniteSet.Base.disjoint s1 s3)
(ensures
FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.union (FStar.FiniteSet.Base.union s1
s2)
s3) =
FStar.FiniteSet.Base.cardinality s1 + FStar.FiniteSet.Base.cardinality s2 +
FStar.FiniteSet.Base.cardinality s3) | {
"end_col": 59,
"end_line": 321,
"start_col": 2,
"start_line": 320
} |
FStar.Pervasives.Lemma | val subset_helper (a: eqtype) (s1 s2: set a)
: Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2)) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x) | val subset_helper (a: eqtype) (s1 s2: set a)
: Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2))
let subset_helper (a: eqtype) (s1 s2: set a)
: Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2)) = | false | null | true | introduce (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _. introduce forall x . s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.Classical.Sugar.implies_intro",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.squash",
"FStar.FiniteSet.Base.subset",
"FStar.Classical.Sugar.forall_intro",
"Prims.op_Equality",
"Prims.bool",
"Prims._assert",
"Prims.unit",
"Prims.l_True",
"Prims.l_iff",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subset_helper (a: eqtype) (s1 s2: set a)
: Lemma (subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2)) | [] | FStar.FiniteSet.Base.subset_helper | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.eqtype -> s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma
(ensures
FStar.FiniteSet.Base.subset s1 s2 <==>
(forall (o: a). {:pattern FStar.FiniteSet.Base.mem o s1\/FStar.FiniteSet.Base.mem o s2}
FStar.FiniteSet.Base.mem o s1 ==> FStar.FiniteSet.Base.mem o s2)) | {
"end_col": 33,
"end_line": 376,
"start_col": 2,
"start_line": 373
} |
Prims.Tot | val difference_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs' | val difference_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)})
let rec difference_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) = | false | null | false | match xs with
| [] -> []
| hd :: tl ->
let zs' = difference_lists tl ys in
if FLT.mem hd ys then zs' else hd :: zs' | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.list",
"Prims.Nil",
"FStar.List.Tot.Base.mem",
"Prims.bool",
"Prims.Cons",
"Prims.l_Forall",
"Prims.l_iff",
"Prims.b2t",
"Prims.l_and",
"Prims.l_not",
"FStar.FiniteSet.Base.difference_lists"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val difference_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) | [
"recursion"
] | FStar.FiniteSet.Base.difference_lists | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xs: Prims.list a -> ys: Prims.list a
-> zs:
Prims.list a
{ forall (z: a).
FStar.List.Tot.Base.mem z zs <==>
FStar.List.Tot.Base.mem z xs /\ ~(FStar.List.Tot.Base.mem z ys) } | {
"end_col": 92,
"end_line": 128,
"start_col": 2,
"start_line": 126
} |
FStar.Pervasives.Lemma | val equal_lemma: Prims.unit -> Lemma (equal_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
) | val equal_lemma: Prims.unit -> Lemma (equal_fact)
let equal_lemma () : Lemma (equal_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . equal s1 s2 <==>
(forall o. {:pattern mem o s1\/mem o s2} mem o s1 <==> mem o s2)
with (introduce (forall o. {:pattern mem o s1\/mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _. introduce forall x . s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"FStar.FiniteSet.Base.equal",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"Prims.op_Equality",
"Prims.bool",
"Prims._assert",
"Prims.l_and",
"Prims.l_True",
"FStar.FiniteSet.Base.equal_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal_lemma: Prims.unit -> Lemma (equal_fact) | [] | FStar.FiniteSet.Base.equal_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.equal_fact) | {
"end_col": 3,
"end_line": 392,
"start_col": 2,
"start_line": 385
} |
FStar.Pervasives.Lemma | val singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl | val singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r])
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) = | false | null | true | match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Prims.list",
"FStar.FiniteSet.Base.singleton_cardinality_helper",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"Prims.__proj__Cons__item__hd",
"Prims.l_and",
"FStar.List.Tot.Base.mem",
"Prims.l_Forall",
"Prims.l_iff",
"Prims.squash",
"Prims.eq2",
"FStar.FiniteSet.Base.remove_repeats",
"Prims.Cons",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r)) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) | [
"recursion"
] | FStar.FiniteSet.Base.singleton_cardinality_helper | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | r: a -> xs: Prims.list a
-> FStar.Pervasives.Lemma
(requires
FStar.List.Tot.Base.mem r xs /\ (forall (x: a). FStar.List.Tot.Base.mem x xs <==> x = r))
(ensures FStar.FiniteSet.Base.remove_repeats xs == [r]) | {
"end_col": 39,
"end_line": 198,
"start_col": 2,
"start_line": 194
} |
Prims.Tot | val union_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys | val union_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys})
let rec union_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) = | false | null | false | match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.list",
"Prims.Cons",
"FStar.FiniteSet.Base.union_lists",
"Prims.l_Forall",
"Prims.l_iff",
"Prims.b2t",
"FStar.List.Tot.Base.mem",
"Prims.l_or"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T; | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_lists (#a: eqtype) (xs ys: list a)
: (zs: list a {forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) | [
"recursion"
] | FStar.FiniteSet.Base.union_lists | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xs: Prims.list a -> ys: Prims.list a
-> zs:
Prims.list a
{ forall (z: a).
FStar.List.Tot.Base.mem z zs <==>
FStar.List.Tot.Base.mem z xs \/ FStar.List.Tot.Base.mem z ys } | {
"end_col": 39,
"end_line": 102,
"start_col": 2,
"start_line": 100
} |
FStar.Pervasives.Lemma | val disjoint_lemma: Prims.unit -> Lemma (disjoint_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
) | val disjoint_lemma: Prims.unit -> Lemma (disjoint_fact)
let disjoint_lemma () : Lemma (disjoint_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . disjoint s1 s2 <==>
(forall o. {:pattern mem o s1\/mem o s2} not (mem o s1) \/ not (mem o s2))
with (introduce (forall o. {:pattern mem o s1\/mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint
s1
s2
with _. (introduce forall x . not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2)))) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"FStar.FiniteSet.Base.disjoint",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Negation",
"FStar.FiniteSet.Base.mem",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"Prims.op_AmpAmp",
"Prims._assert",
"Prims.l_True",
"FStar.FiniteSet.Base.disjoint_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val disjoint_lemma: Prims.unit -> Lemma (disjoint_fact) | [] | FStar.FiniteSet.Base.disjoint_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.disjoint_fact) | {
"end_col": 3,
"end_line": 408,
"start_col": 2,
"start_line": 400
} |
FStar.Pervasives.Lemma | val length_zero_lemma: Prims.unit -> Lemma (length_zero_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ()) | val length_zero_lemma: Prims.unit -> Lemma (length_zero_fact)
let length_zero_lemma () : Lemma (length_zero_fact) = | false | null | true | introduce forall (a: eqtype) (s: set a) . (cardinality s = 0 <==> s == emptyset) /\
(cardinality s <> 0 <==> (exists x. mem x s))
with (reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x.mem x s
with (Cons?.hd (set_as_list s))
and ()) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_and",
"Prims.l_iff",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"Prims.eq2",
"FStar.FiniteSet.Base.emptyset",
"Prims.op_disEquality",
"Prims.l_Exists",
"FStar.FiniteSet.Base.mem",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"FStar.Classical.Sugar.exists_intro",
"Prims.__proj__Cons__item__hd",
"FStar.FiniteSet.Base.set_as_list",
"Prims._assert",
"Prims.list",
"Prims.Nil",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.Pervasives.reveal_opaque",
"Prims.nat",
"Prims.l_True",
"FStar.FiniteSet.Base.length_zero_fact",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val length_zero_lemma: Prims.unit -> Lemma (length_zero_fact) | [] | FStar.FiniteSet.Base.length_zero_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.length_zero_fact) | {
"end_col": 20,
"end_line": 181,
"start_col": 2,
"start_line": 171
} |
FStar.Pervasives.Lemma | val union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a)
: Lemma
(requires
list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\
(forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\
(forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) | val union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a)
: Lemma
(requires
list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\
(forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\
(forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2)
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a)
: Lemma
(requires
list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\
(forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\
(forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) = | false | null | true | match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl ->
union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Prims.list",
"FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length",
"FStar.FiniteSet.Base.union_of_disjoint_nonrepeating_lists_length_lemma",
"FStar.FiniteSet.Base.remove_from_nonrepeating_list",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"FStar.FiniteSet.Base.list_nonrepeating",
"Prims.l_Forall",
"Prims.l_not",
"FStar.List.Tot.Base.mem",
"Prims.l_iff",
"Prims.l_or",
"Prims.squash",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2)) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1 xs2 xs3: list a)
: Lemma
(requires
list_nonrepeating xs1 /\ list_nonrepeating xs2 /\ list_nonrepeating xs3 /\
(forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2)) /\
(forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) | [
"recursion"
] | FStar.FiniteSet.Base.union_of_disjoint_nonrepeating_lists_length_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xs1: Prims.list a -> xs2: Prims.list a -> xs3: Prims.list a
-> FStar.Pervasives.Lemma
(requires
FStar.FiniteSet.Base.list_nonrepeating xs1 /\ FStar.FiniteSet.Base.list_nonrepeating xs2 /\
FStar.FiniteSet.Base.list_nonrepeating xs3 /\
(forall (x: a). ~(FStar.List.Tot.Base.mem x xs1 /\ FStar.List.Tot.Base.mem x xs2)) /\
(forall (x: a).
FStar.List.Tot.Base.mem x xs3 <==>
FStar.List.Tot.Base.mem x xs1 \/ FStar.List.Tot.Base.mem x xs2))
(ensures
FStar.List.Tot.Base.length xs3 =
FStar.List.Tot.Base.length xs1 + FStar.List.Tot.Base.length xs2) | {
"end_col": 111,
"end_line": 309,
"start_col": 2,
"start_line": 307
} |
FStar.Pervasives.Lemma | val nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a)
: Lemma
(requires
list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) | val nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a)
: Lemma
(requires
list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a)
: Lemma
(requires
list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) = | false | null | true | match s1 with
| [] -> ()
| hd :: tl ->
nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"Prims.list",
"FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length",
"FStar.FiniteSet.Base.remove_from_nonrepeating_list",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"FStar.FiniteSet.Base.list_nonrepeating",
"Prims.l_Forall",
"Prims.l_iff",
"FStar.List.Tot.Base.mem",
"Prims.squash",
"Prims.op_Equality",
"Prims.nat",
"FStar.List.Tot.Base.length",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2)) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1 s2: list a)
: Lemma
(requires
list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) | [
"recursion"
] | FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: Prims.list a -> s2: Prims.list a
-> FStar.Pervasives.Lemma
(requires
FStar.FiniteSet.Base.list_nonrepeating s1 /\ FStar.FiniteSet.Base.list_nonrepeating s2 /\
(forall (x: a). FStar.List.Tot.Base.mem x s1 <==> FStar.List.Tot.Base.mem x s2))
(ensures FStar.List.Tot.Base.length s1 = FStar.List.Tot.Base.length s2) | {
"end_col": 111,
"end_line": 232,
"start_col": 2,
"start_line": 230
} |
FStar.Pervasives.Lemma | val intersection_idempotent_left_lemma: Prims.unit -> Lemma (intersection_idempotent_left_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) | val intersection_idempotent_left_lemma: Prims.unit -> Lemma (intersection_idempotent_left_fact)
let intersection_idempotent_left_lemma () : Lemma (intersection_idempotent_left_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . intersection s1 (intersection s1 s2) ==
intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.intersection",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.intersection_idempotent_left_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_idempotent_left_lemma: Prims.unit -> Lemma (intersection_idempotent_left_fact) | [] | FStar.FiniteSet.Base.intersection_idempotent_left_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit
-> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.intersection_idempotent_left_fact) | {
"end_col": 79,
"end_line": 298,
"start_col": 2,
"start_line": 297
} |
FStar.Pervasives.Lemma | val intersection_idempotent_right_lemma: Prims.unit -> Lemma (intersection_idempotent_right_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) | val intersection_idempotent_right_lemma: Prims.unit -> Lemma (intersection_idempotent_right_fact)
let intersection_idempotent_right_lemma () : Lemma (intersection_idempotent_right_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . intersection (intersection s1 s2) s2 ==
intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.intersection",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.intersection_idempotent_right_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_idempotent_right_lemma: Prims.unit -> Lemma (intersection_idempotent_right_fact) | [] | FStar.FiniteSet.Base.intersection_idempotent_right_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit
-> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.intersection_idempotent_right_fact) | {
"end_col": 79,
"end_line": 293,
"start_col": 2,
"start_line": 292
} |
FStar.Pervasives.Lemma | val union_of_disjoint_lemma: Prims.unit -> Lemma (union_of_disjoint_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
) | val union_of_disjoint_lemma: Prims.unit -> Lemma (union_of_disjoint_fact)
let union_of_disjoint_lemma () : Lemma (union_of_disjoint_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . disjoint s1 s2 ==>
difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\
difference (union s1 s2) s2 == s1
with _. (assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"FStar.FiniteSet.Base.disjoint",
"Prims.l_and",
"Prims.eq2",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.union",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"Prims.l_True",
"FStar.FiniteSet.Base.union_of_disjoint_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_of_disjoint_lemma: Prims.unit -> Lemma (union_of_disjoint_fact) | [] | FStar.FiniteSet.Base.union_of_disjoint_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.union_of_disjoint_fact) | {
"end_col": 5,
"end_line": 274,
"start_col": 2,
"start_line": 268
} |
FStar.Pervasives.Lemma | val insert_nonmember_cardinality_lemma: Prims.unit -> Lemma (insert_nonmember_cardinality_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
) | val insert_nonmember_cardinality_lemma: Prims.unit -> Lemma (insert_nonmember_cardinality_fact)
let insert_nonmember_cardinality_lemma () : Lemma (insert_nonmember_cardinality_fact) = | false | null | true | introduce forall (a: eqtype) (s: set a) (x: a) . not (mem x s) ==>
cardinality (insert x s) = cardinality s + 1
with introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s))
(set_as_list (insert x s))) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Negation",
"FStar.FiniteSet.Base.mem",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.insert",
"Prims.op_Addition",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"FStar.FiniteSet.Base.nonrepeating_lists_with_same_elements_have_same_length",
"Prims.Cons",
"FStar.FiniteSet.Base.set_as_list",
"FStar.Pervasives.reveal_opaque",
"Prims.nat",
"Prims.l_True",
"FStar.FiniteSet.Base.insert_nonmember_cardinality_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_nonmember_cardinality_lemma: Prims.unit -> Lemma (insert_nonmember_cardinality_fact) | [] | FStar.FiniteSet.Base.insert_nonmember_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit
-> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.insert_nonmember_cardinality_fact) | {
"end_col": 5,
"end_line": 252,
"start_col": 2,
"start_line": 246
} |
FStar.Pervasives.Lemma | val set_as_list_cardinality_lemma: Prims.unit -> Lemma (set_as_list_cardinality_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_as_list_cardinality_lemma ()
: Lemma (set_as_list_cardinality_fact) =
introduce forall (a: eqtype) (s: set a). FLT.length (set_as_list s) = cardinality s
with reveal_opaque (`%cardinality) (cardinality #a) | val set_as_list_cardinality_lemma: Prims.unit -> Lemma (set_as_list_cardinality_fact)
let set_as_list_cardinality_lemma () : Lemma (set_as_list_cardinality_fact) = | false | null | true | introduce forall (a: eqtype) (s: set a) . FLT.length (set_as_list s) = cardinality s
with reveal_opaque (`%cardinality) (cardinality #a) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.List.Tot.Base.length",
"FStar.FiniteSet.Base.set_as_list",
"FStar.FiniteSet.Base.cardinality",
"FStar.Pervasives.reveal_opaque",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.set_as_list_cardinality_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s)))
let insert_remove_lemma ()
: Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s
with
introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s
let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false)
(ensures remove x (insert x s) == s) =
assert (feq s (remove x (insert x s)))
let remove_insert_lemma ()
: Lemma (remove_insert_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = false ==> remove x (insert x s) == s
with introduce mem x s = false ==> remove x (insert x s) == s
with _. remove_insert_helper a x s
let set_as_list_cardinality_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_as_list_cardinality_lemma: Prims.unit -> Lemma (set_as_list_cardinality_fact) | [] | FStar.FiniteSet.Base.set_as_list_cardinality_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.set_as_list_cardinality_fact) | {
"end_col": 53,
"end_line": 436,
"start_col": 2,
"start_line": 435
} |
FStar.Pervasives.Lemma | val insert_remove_lemma: Prims.unit -> Lemma (insert_remove_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_remove_lemma ()
: Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s
with
introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s | val insert_remove_lemma: Prims.unit -> Lemma (insert_remove_fact)
let insert_remove_lemma () : Lemma (insert_remove_fact) = | false | null | true | introduce forall (a: eqtype) (x: a) (s: set a) . mem x s = true ==> insert x (remove x s) == s
with introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.FiniteSet.Base.mem",
"Prims.eq2",
"FStar.FiniteSet.Base.insert",
"FStar.FiniteSet.Base.remove",
"FStar.Classical.Sugar.implies_intro",
"Prims.squash",
"FStar.FiniteSet.Base.insert_remove_helper",
"Prims.l_True",
"FStar.FiniteSet.Base.insert_remove_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s)))
let insert_remove_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_remove_lemma: Prims.unit -> Lemma (insert_remove_fact) | [] | FStar.FiniteSet.Base.insert_remove_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.insert_remove_fact) | {
"end_col": 39,
"end_line": 420,
"start_col": 2,
"start_line": 417
} |
FStar.Pervasives.Lemma | val union_idempotent_left_lemma: Prims.unit -> Lemma (union_idempotent_left_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2)) | val union_idempotent_left_lemma: Prims.unit -> Lemma (union_idempotent_left_fact)
let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.union",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.union_idempotent_left_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_idempotent_left_lemma: Prims.unit -> Lemma (union_idempotent_left_fact) | [] | FStar.FiniteSet.Base.union_idempotent_left_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.union_idempotent_left_fact) | {
"end_col": 58,
"end_line": 288,
"start_col": 2,
"start_line": 287
} |
FStar.Pervasives.Lemma | val cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) | val cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2))
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) = | false | null | true | union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.union",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.intersection",
"Prims.unit",
"FStar.FiniteSet.Base.union_of_disjoint_sets_cardinality_lemma",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) | [] | FStar.FiniteSet.Base.cardinality_matches_difference_plus_intersection_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma
(ensures
FStar.FiniteSet.Base.cardinality s1 =
FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.difference s1 s2) +
FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.intersection s1 s2)) | {
"end_col": 65,
"end_line": 326,
"start_col": 2,
"start_line": 325
} |
FStar.Pervasives.Lemma | val insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s))) | val insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s) = | false | null | true | assert (feq s (insert x (remove x s))) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.insert",
"FStar.FiniteSet.Base.remove",
"Prims.unit",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s) | [] | FStar.FiniteSet.Base.insert_remove_helper | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.eqtype -> x: a -> s: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.mem x s)
(ensures FStar.FiniteSet.Base.insert x (FStar.FiniteSet.Base.remove x s) == s) | {
"end_col": 40,
"end_line": 413,
"start_col": 2,
"start_line": 413
} |
FStar.Pervasives.Lemma | val union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) | val union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))
let union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) = | false | null | true | assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))
) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.union",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.intersection",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) | [] | FStar.FiniteSet.Base.union_is_differences_and_intersection | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma
(ensures
FStar.FiniteSet.Base.union s1 s2 ==
FStar.FiniteSet.Base.union (FStar.FiniteSet.Base.union (FStar.FiniteSet.Base.difference s1 s2)
(FStar.FiniteSet.Base.intersection s1 s2))
(FStar.FiniteSet.Base.difference s2 s1)) | {
"end_col": 103,
"end_line": 330,
"start_col": 2,
"start_line": 330
} |
FStar.Pervasives.Lemma | val union_idempotent_right_lemma: Prims.unit -> Lemma (union_idempotent_right_fact) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2)) | val union_idempotent_right_lemma: Prims.unit -> Lemma (union_idempotent_right_fact)
let union_idempotent_right_lemma () : Lemma (union_idempotent_right_fact) = | false | null | true | introduce forall (a: eqtype) (s1: set a) (s2: set a) . union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2)) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.union",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.union_idempotent_right_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma () | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_idempotent_right_lemma: Prims.unit -> Lemma (union_idempotent_right_fact) | [] | FStar.FiniteSet.Base.union_idempotent_right_lemma | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.union_idempotent_right_fact) | {
"end_col": 58,
"end_line": 283,
"start_col": 2,
"start_line": 282
} |
FStar.Pervasives.Lemma | val remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false)
(ensures remove x (insert x s) == s) =
assert (feq s (remove x (insert x s))) | val remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s)
let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) = | false | null | true | assert (feq s (remove x (insert x s))) | {
"checked_file": "FStar.FiniteSet.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
"lemma"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.remove",
"FStar.FiniteSet.Base.insert",
"Prims.unit",
"Prims.b2t",
"Prims.op_Equality",
"FStar.FiniteSet.Base.mem",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s)))
let insert_remove_lemma ()
: Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s
with
introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s
let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) | false | false | FStar.FiniteSet.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) | [] | FStar.FiniteSet.Base.remove_insert_helper | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.eqtype -> x: a -> s: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.mem x s = false)
(ensures FStar.FiniteSet.Base.remove x (FStar.FiniteSet.Base.insert x s) == s) | {
"end_col": 40,
"end_line": 425,
"start_col": 2,
"start_line": 425
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_24 = 0x1000000 | let pow2_24 = | false | null | false | 0x1000000 | {
"checked_file": "Vale.AES.GCTR.fst.checked",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
"total"
] | [] | [] | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
() | false | true | Vale.AES.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_24 : Prims.int | [] | Vale.AES.GCTR.pow2_24 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.int | {
"end_col": 30,
"end_line": 296,
"start_col": 21,
"start_line": 296
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat24 = natN pow2_24 | let nat24 = | false | null | false | natN pow2_24 | {
"checked_file": "Vale.AES.GCTR.fst.checked",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.natN",
"Vale.AES.GCTR.pow2_24"
] | [] | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
() | false | true | Vale.AES.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat24 : Type0 | [] | Vale.AES.GCTR.nat24 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 24,
"end_line": 297,
"start_col": 12,
"start_line": 297
} |
|
FStar.Pervasives.Lemma | val gctr_partial_opaque_init (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_LE alg key)
(ensures gctr_partial alg 0 plain cipher key icb) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
() | val gctr_partial_opaque_init (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_LE alg key)
(ensures gctr_partial alg 0 plain cipher key icb)
let gctr_partial_opaque_init alg plain cipher key icb = | false | null | true | gctr_partial_reveal ();
() | {
"checked_file": "Vale.AES.GCTR.fst.checked",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.AES.GCTR.gctr_partial_reveal"
] | [] | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
() | false | false | Vale.AES.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_partial_opaque_init (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_LE alg key)
(ensures gctr_partial alg 0 plain cipher key icb) | [] | Vale.AES.GCTR.gctr_partial_opaque_init | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key)
(ensures Vale.AES.GCTR.gctr_partial alg 0 plain cipher key icb) | {
"end_col": 4,
"end_line": 54,
"start_col": 2,
"start_line": 53
} |
FStar.Pervasives.Lemma | val gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) | val gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
let rec gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = | false | null | true | if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) | {
"checked_file": "Vale.AES.GCTR.fst.checked",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
"lemma",
""
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_s.gctr_plain_internal_LE",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_s.aes_key_LE",
"Prims.int",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GCTR.gctr_encrypt_recursive_length",
"FStar.Seq.Properties.tail",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.nat",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] | false | false | Vale.AES.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] | [
"recursion"
] | Vale.AES.GCTR.gctr_encrypt_recursive_length | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_s.gctr_plain_internal_LE ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_s.aes_key_LE alg ->
i: Prims.int
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key i) ==
FStar.Seq.Base.length plain)
(decreases FStar.Seq.Base.length plain)
[SMTPat (FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key i))] | {
"end_col": 69,
"end_line": 113,
"start_col": 2,
"start_line": 112
} |
FStar.Pervasives.Lemma | val lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
() | val lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
let lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = | false | null | true | Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
() | {
"checked_file": "Vale.AES.GCTR.fst.checked",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Prims.nat",
"Prims.unit",
"FStar.UInt.shift_left_value_lemma",
"Vale.Def.TypesNative_s.reveal_ishl",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Vale.Def.Types_s.ishl",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) | false | false | Vale.AES.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) | [] | Vale.AES.GCTR.lemma_ishl_32 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.Def.Types_s.nat32 -> k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.ishl x k == x * Prims.pow2 k % Vale.Def.Words_s.pow2_32) | {
"end_col": 4,
"end_line": 283,
"start_col": 2,
"start_line": 281
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.