effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; ()
val nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) let nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) =
false
null
true
let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; nat32_xor_bytewise_2_helper2 x x' t t'; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "Vale.AES.GCTR.nat32_xor_bytewise_2_helper2", "Vale.AES.GCTR.lemma_ishl_ixor_32", "Vale.AES.GCTR.lemma_ishl_32", "Vale.AES.GCTR.nat32_xor_bytewise_2_helper3", "Vale.Def.Words_s.nat8", "Prims.l_and", "Prims.eq2", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Types_s.ixor", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
[]
Vale.AES.GCTR.nat32_xor_bytewise_2
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> m: Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\ Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s') (ensures Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t')
{ "end_col": 4, "end_line": 483, "start_col": 3, "start_line": 462 }
FStar.Pervasives.Lemma
val lemma_ishl_ixor_32 (x y: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; ()
val lemma_ishl_ixor_32 (x y: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) let lemma_ishl_ixor_32 (x y: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) =
false
null
true
Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Prims.nat", "Prims.unit", "FStar.UInt.shift_left_logxor_lemma", "Vale.Def.TypesNative_s.reveal_ixor", "Vale.Def.Types_s.ishl", "Vale.Def.Words_s.pow2_32", "Vale.Def.TypesNative_s.reveal_ishl", "Vale.Def.Types_s.ixor", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ishl_ixor_32 (x y: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
[]
Vale.AES.GCTR.lemma_ishl_ixor_32
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat32 -> y: Vale.Def.Types_s.nat32 -> k: Prims.nat -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ishl (Vale.Def.Types_s.ixor x y) k == Vale.Def.Types_s.ixor (Vale.Def.Types_s.ishl x k) (Vale.Def.Types_s.ishl y k))
{ "end_col": 4, "end_line": 294, "start_col": 2, "start_line": 288 }
FStar.Pervasives.Lemma
val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial_def alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; ()
val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial_def alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) let gctr_partial_completed (alg: algorithm) (plain cipher: seq quad32) (key: seq nat32) (icb: quad32) =
false
null
true
gctr_indexed icb plain alg key cipher; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Prims.unit", "Vale.AES.GCTR.gctr_indexed" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial_def alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
[]
Vale.AES.GCTR.gctr_partial_completed
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> icb: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key /\ FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\ FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\ Vale.AES.GCTR.gctr_partial_def alg (FStar.Seq.Base.length cipher) plain cipher key icb) (ensures cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key 0)
{ "end_col": 4, "end_line": 190, "start_col": 2, "start_line": 189 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; ()
val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0) let nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0) =
false
null
true
let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "Vale.AES.GCTR.nat32_xor_bytewise_1_helper1", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Prims.int", "Prims.op_Addition", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Prims.op_Modulus", "Prims.squash", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0)
[]
Vale.AES.GCTR.nat32_xor_bytewise_1_helper2
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures Mkfour?.lo0 t == Mkfour?.lo0 t')
{ "end_col": 4, "end_line": 344, "start_col": 3, "start_line": 336 }
FStar.Pervasives.Lemma
val gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures ( let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = gctr_encrypt_LE icb_BE (make_gctr_plain_LE plain) alg key ))
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs ()
val gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures ( let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = gctr_encrypt_LE icb_BE (make_gctr_plain_LE plain) alg key )) let gctr_encrypt_empty (icb_BE: quad32) (plain_LE cipher_LE: seq quad32) (alg: algorithm) (key: seq nat32) =
false
null
true
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.empty", "Prims.eq2", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Vale.AES.GCTR.make_gctr_plain_LE", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.AES.GCTR_s.gctr_encrypt_LE_reveal", "FStar.Pervasives.reveal_opaque", "Prims.l_True" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = ()
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures ( let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = gctr_encrypt_LE icb_BE (make_gctr_plain_LE plain) alg key ))
[]
Vale.AES.GCTR.gctr_encrypt_empty
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb_BE: Vale.Def.Types_s.quad32 -> plain_LE: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher_LE: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key) (ensures (let plain = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_LE) 0 0 in cipher = Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE (Vale.AES.GCTR.make_gctr_plain_LE plain) alg key))
{ "end_col": 4, "end_line": 50, "start_col": 2, "start_line": 34 }
FStar.Pervasives.Lemma
val gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma (requires is_aes_key_LE alg key /\ cipher == gctr_encrypt_recursive icb_BE plain alg key 0 /\ length plain * 16 < pow2_32 ) (ensures le_seq_quad32_to_bytes cipher == gctr_encrypt_LE icb_BE (le_seq_quad32_to_bytes plain) alg key)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; ()
val gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma (requires is_aes_key_LE alg key /\ cipher == gctr_encrypt_recursive icb_BE plain alg key 0 /\ length plain * 16 < pow2_32 ) (ensures le_seq_quad32_to_bytes cipher == gctr_encrypt_LE icb_BE (le_seq_quad32_to_bytes plain) alg key) let gctr_partial_to_full_basic (icb_BE: quad32) (plain: seq quad32) (alg: algorithm) (key: seq nat32) (cipher: seq quad32) =
false
null
true
gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "Prims.unit", "Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes", "Vale.Def.Words_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Vale.Def.Types_s.nat8", "Vale.AES.GCTR_s.gctr_encrypt_LE_reveal" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma (requires is_aes_key_LE alg key /\ cipher == gctr_encrypt_recursive icb_BE plain alg key 0 /\ length plain * 16 < pow2_32 ) (ensures le_seq_quad32_to_bytes cipher == gctr_encrypt_LE icb_BE (le_seq_quad32_to_bytes plain) alg key)
[]
Vale.AES.GCTR.gctr_partial_to_full_basic
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb_BE: Vale.Def.Types_s.quad32 -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key /\ cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb_BE plain alg key 0 /\ FStar.Seq.Base.length plain * 16 < Vale.Def.Words_s.pow2_32) (ensures Vale.Def.Types_s.le_seq_quad32_to_bytes cipher == Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE (Vale.Def.Types_s.le_seq_quad32_to_bytes plain) alg key)
{ "end_col": 4, "end_line": 212, "start_col": 2, "start_line": 205 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; ()
val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) let nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) =
false
null
true
let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "Vale.AES.GCTR.nat32_xor_bytewise_3_helper2", "Vale.AES.GCTR.lemma_ishl_ixor_32", "Vale.AES.GCTR.lemma_ishl_32", "Vale.AES.GCTR.nat32_xor_bytewise_3_helper3", "Vale.Def.Words_s.nat8", "Prims.l_and", "Prims.eq2", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Types_s.ixor", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
[]
Vale.AES.GCTR.nat32_xor_bytewise_3
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> m: Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\ Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s' /\ Mkfour?.hi2 s == Mkfour?.hi2 s') (ensures Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t' /\ Mkfour?.hi2 t == Mkfour?.hi2 t')
{ "end_col": 4, "end_line": 509, "start_col": 3, "start_line": 496 }
FStar.Pervasives.Lemma
val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16}) : Lemma (slice (pad_to_128_bits s) 0 (length s) == s)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s) = assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); ()
val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16}) : Lemma (slice (pad_to_128_bits s) 0 (length s) == s) let slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16}) : Lemma (slice (pad_to_128_bits s) 0 (length s) == s) =
false
null
true
assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Vale.AES.GCTR_s.pad_to_128_bits", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); () let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16}) : Lemma (slice (pad_to_128_bits s) 0 (length s) == s)
[]
Vale.AES.GCTR.slice_pad_to_128_bits
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 {0 < FStar.Seq.Base.length s /\ FStar.Seq.Base.length s < 16} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.AES.GCTR_s.pad_to_128_bits s) 0 (FStar.Seq.Base.length s) == s)
{ "end_col": 4, "end_line": 605, "start_col": 2, "start_line": 603 }
FStar.Pervasives.Lemma
val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb
val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) let gctr_partial_opaque_completed (alg: algorithm) (plain cipher: seq quad32) (key: seq nat32) (icb: quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) =
false
null
true
gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Vale.AES.GCTR.gctr_partial_completed", "Prims.unit", "Vale.AES.GCTR.gctr_partial_reveal", "Prims.l_and", "Vale.AES.AES_s.is_aes_key_LE", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.b2t", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_32", "Vale.AES.GCTR.gctr_partial", "Prims.squash", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
[]
Vale.AES.GCTR.gctr_partial_opaque_completed
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> icb: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key /\ FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\ FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\ Vale.AES.GCTR.gctr_partial alg (FStar.Seq.Base.length cipher) plain cipher key icb) (ensures cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key 0)
{ "end_col": 49, "end_line": 202, "start_col": 2, "start_line": 201 }
FStar.Pervasives.Lemma
val lemma_counter_init (x:quad32) (low64 low8:nat64) : Lemma (requires low64 == lo64 x /\ low8 == iand64 low64 0xff) (ensures low8 == x.lo0 % 256)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); ()
val lemma_counter_init (x:quad32) (low64 low8:nat64) : Lemma (requires low64 == lo64 x /\ low8 == iand64 low64 0xff) (ensures low8 == x.lo0 % 256) let lemma_counter_init x low64 low8 =
false
null
true
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); assert (low64 == x.lo0 + x.lo1 * pow2_32); assert (low64 % 256 == x.lo0 % 256); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat64", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Types_s.nat32", "Prims.op_Addition", "FStar.Mul.op_Star", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.pow2_32", "FStar.Pervasives.assert_norm", "Vale.Def.Words_s.pow2_norm", "Vale.Arch.Types.lo64_reveal", "Vale.Def.TypesNative_s.reveal_iand", "Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_counter_init (x:quad32) (low64 low8:nat64) : Lemma (requires low64 == lo64 x /\ low8 == iand64 low64 0xff) (ensures low8 == x.lo0 % 256)
[]
Vale.AES.GCTR.lemma_counter_init
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.quad32 -> low64: Vale.Def.Types_s.nat64 -> low8: Vale.Def.Types_s.nat64 -> FStar.Pervasives.Lemma (requires low64 == Vale.Arch.Types.lo64 x /\ low8 == Vale.Arch.Types.iand64 low64 0xff) (ensures low8 == Mkfour?.lo0 x % 256)
{ "end_col": 4, "end_line": 28, "start_col": 2, "start_line": 21 }
FStar.Pervasives.Lemma
val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma (requires gctr_partial alg b1 p1 c1 key icb1 /\ gctr_partial alg b2 p2 c2 key icb2 /\ b1 == length p1 /\ b1 == length c1 /\ b2 == length p2 /\ b2 == length c2 /\ icb2 == inc32 icb1 b1) (ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); ()
val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma (requires gctr_partial alg b1 p1 c1 key icb1 /\ gctr_partial alg b2 p2 c2 key icb2 /\ b1 == length p1 /\ b1 == length c1 /\ b2 == length p2 /\ b2 == length c2 /\ icb2 == inc32 icb1 b1) (ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
false
null
true
gctr_partial_reveal (); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.AES.AES_common_s.algorithm", "Prims.nat", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Prims.unit", "Vale.AES.GCTR.gctr_partial_reveal" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma (requires gctr_partial alg b1 p1 c1 key icb1 /\ gctr_partial alg b2 p2 c2 key icb2 /\ b1 == length p1 /\ b1 == length c1 /\ b2 == length p2 /\ b2 == length c2 /\ icb2 == inc32 icb1 b1) (ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1)
[]
Vale.AES.GCTR.lemma_gctr_partial_append
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> b1: Prims.nat -> b2: Prims.nat -> p1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> icb1: Vale.Def.Types_s.quad32 -> icb2: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.GCTR.gctr_partial alg b1 p1 c1 key icb1 /\ Vale.AES.GCTR.gctr_partial alg b2 p2 c2 key icb2 /\ b1 == FStar.Seq.Base.length p1 /\ b1 == FStar.Seq.Base.length c1 /\ b2 == FStar.Seq.Base.length p2 /\ b2 == FStar.Seq.Base.length c2 /\ icb2 == Vale.AES.GCTR_s.inc32 icb1 b1) (ensures Vale.AES.GCTR.gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1)
{ "end_col": 4, "end_line": 59, "start_col": 2, "start_line": 58 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0) (ensures t.lo0 == t'.lo0)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; ()
val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0) (ensures t.lo0 == t'.lo0) let nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0) (ensures t.lo0 == t'.lo0) =
false
null
true
let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "Vale.AES.GCTR.nat32_xor_bytewise_1_helper2", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Vale.AES.GCTR.pow2_24", "Vale.AES.GCTR.lemma_ishl_ixor_32", "Vale.AES.GCTR.lemma_ishl_32", "Vale.AES.GCTR.nat32_xor_bytewise_1_helper3", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Types_s.ixor", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0) (ensures t.lo0 == t'.lo0)
[]
Vale.AES.GCTR.nat32_xor_bytewise_1
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> m: Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\ Mkfour?.lo0 s == Mkfour?.lo0 s') (ensures Mkfour?.lo0 t == Mkfour?.lo0 t')
{ "end_col": 4, "end_line": 449, "start_col": 3, "start_line": 435 }
FStar.Pervasives.Lemma
val gctr_indexed (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (cipher: seq quad32) : Lemma (requires length cipher == length plain /\ (forall i. {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i)))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c)
val gctr_indexed (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (cipher: seq quad32) : Lemma (requires length cipher == length plain /\ (forall i. {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i)))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) let gctr_indexed (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (cipher: seq quad32) : Lemma (requires length cipher == length plain /\ (forall i. {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i)))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) =
false
null
true
gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert (equal cipher c)
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_s.gctr_plain_internal_LE", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_s.aes_key_LE", "FStar.Seq.Base.seq", "Prims._assert", "FStar.Seq.Base.equal", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Prims.unit", "Vale.AES.GCTR.gctr_indexed_helper", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_Forall", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Prims.l_imp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.index", "Vale.Def.Types_s.quad32_xor", "Vale.AES.GCTR.aes_encrypt_BE", "Vale.AES.GCTR_s.inc32", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_indexed (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (cipher: seq quad32) : Lemma (requires length cipher == length plain /\ (forall i. {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i)))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
[]
Vale.AES.GCTR.gctr_indexed
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb: Vale.Def.Types_s.quad32 -> plain: Vale.AES.GCTR_s.gctr_plain_internal_LE -> alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_s.aes_key_LE alg -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length cipher == FStar.Seq.Base.length plain /\ (forall (i: Prims.int { i >= 0 /\ i < FStar.Seq.Base.length plain /\ (i >= 0) /\ (i < FStar.Seq.Base.length cipher) }). {:pattern FStar.Seq.Base.index cipher i} 0 <= i /\ i < FStar.Seq.Base.length cipher ==> FStar.Seq.Base.index cipher i == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain i) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR_s.inc32 icb i)))) (ensures cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key 0)
{ "end_col": 24, "end_line": 185, "start_col": 2, "start_line": 183 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; ()
val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) let nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) =
false
null
true
let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "Vale.AES.GCTR.nat32_xor_bytewise_2_helper1", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Prims.int", "Prims.op_Addition", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Prims.op_Modulus", "Prims.squash", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
[]
Vale.AES.GCTR.nat32_xor_bytewise_2_helper2
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000) (ensures Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t')
{ "end_col": 4, "end_line": 363, "start_col": 3, "start_line": 353 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); ()
val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) let nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) =
false
null
true
let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Prims.squash", "Prims.int", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
[]
Vale.AES.GCTR.nat32_xor_bytewise_3_helper3
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s' /\ Mkfour?.hi2 s == Mkfour?.hi2 s') (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
{ "end_col": 4, "end_line": 422, "start_col": 3, "start_line": 417 }
FStar.Pervasives.Lemma
val step2 (s: seq nat8 {0 < length s /\ length s < 16}) (q icb_BE: quad32) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int): Lemma(let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) = let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in if s = q_bytes_prefix then ( // s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s) // q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i le_quad32_to_bytes_to_quad32 (pad_to_128_bits s); slice_pad_to_128_bits s; quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s); //assert (equal s_cipher_bytes q_cipher_bytes); () ) else (); ()
val step2 (s: seq nat8 {0 < length s /\ length s < 16}) (q icb_BE: quad32) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) let step2 (s: seq nat8 {0 < length s /\ length s < 16}) (q icb_BE: quad32) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) =
false
null
true
let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in if s = q_bytes_prefix then (le_quad32_to_bytes_to_quad32 (pad_to_128_bits s); slice_pad_to_128_bits s; quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s); ()); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.Def.Types_s.quad32", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_s.aes_key_LE", "Prims.int", "Prims.unit", "Prims.op_Equality", "Vale.AES.GCTR.quad32_xor_bytewise", "Vale.Def.Types_s.le_bytes_to_quad32", "Vale.AES.GCTR_s.pad_to_128_bits", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.AES.GCTR.slice_pad_to_128_bits", "Vale.Arch.Types.le_quad32_to_bytes_to_quad32", "Prims.bool", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.GCTR_s.inc32", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.AES.GCTR_s.gctr_encrypt_block", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); () let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s) = assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); () let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int): Lemma(let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val step2 (s: seq nat8 {0 < length s /\ length s < 16}) (q icb_BE: quad32) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
[]
Vale.AES.GCTR.step2
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 {0 < FStar.Seq.Base.length s /\ FStar.Seq.Base.length s < 16} -> q: Vale.Def.Types_s.quad32 -> icb_BE: Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_s.aes_key_LE alg -> i: Prims.int -> FStar.Pervasives.Lemma (ensures (let q_bytes = Vale.Def.Types_s.le_quad32_to_bytes q in let q_bytes_prefix = FStar.Seq.Base.slice q_bytes 0 (FStar.Seq.Base.length s) in let q_cipher = Vale.AES.GCTR_s.gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes q_cipher) 0 (FStar.Seq.Base.length s) in let s_quad = Vale.Def.Types_s.le_bytes_to_quad32 (Vale.AES.GCTR_s.pad_to_128_bits s) in let s_cipher = Vale.AES.GCTR_s.gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes s_cipher) 0 (FStar.Seq.Base.length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes))
{ "end_col": 4, "end_line": 640, "start_col": 3, "start_line": 616 }
FStar.Pervasives.Lemma
val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p}) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); ()
val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p}) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) let step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p}) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) =
false
null
true
let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "Vale.Def.Types_s.nat8", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.slice", "Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes0", "Prims.int", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "FStar.Pervasives.Native.tuple2", "Vale.Def.Words_s.nat8", "FStar.Seq.Properties.split", "Prims.op_Division", "Prims.op_Modulus", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p}) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE)
[]
Vale.AES.GCTR.step1
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> num_bytes: Prims.nat{num_bytes < 16 * FStar.Seq.Base.length p} -> FStar.Pervasives.Lemma (ensures (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let _ = FStar.Seq.Properties.split (FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes p ) 0 num_bytes) (num_blocks * 16) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ full_blocks _ = _ in let full_quads_LE = Vale.Def.Types_s.le_bytes_to_seq_quad32 full_blocks in let p_prefix = FStar.Seq.Base.slice p 0 num_blocks in p_prefix == full_quads_LE) <: Type0))
{ "end_col": 4, "end_line": 266, "start_col": 3, "start_line": 253 }
FStar.Pervasives.Lemma
val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i: int). {:pattern (index s i)\/(index s' i)} m <= i /\ i < n ==> index s i == index s' i))
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux
val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i: int). {:pattern (index s i)\/(index s' i)} m <= i /\ i < n ==> index s i == index s' i)) let lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i: int). {:pattern (index s i)\/(index s' i)} m <= i /\ i < n ==> index s i == index s' i)) =
false
null
true
let aux (i: nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.eq2", "FStar.Seq.Base.index", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Base.lemma_index_slice", "Prims.op_Subtraction", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.int", "Prims.l_imp" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i: int). {:pattern (index s i)\/(index s' i)} m <= i /\ i < n ==> index s i == index s' i))
[]
Vale.AES.GCTR.lemma_slice_orig_index
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq a -> s': FStar.Seq.Base.seq a -> m: Prims.nat -> n: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == FStar.Seq.Base.length s' /\ m <= n /\ n <= FStar.Seq.Base.length s /\ FStar.Seq.Base.slice s m n == FStar.Seq.Base.slice s' m n) (ensures forall (i: Prims.int). {:pattern FStar.Seq.Base.index s i\/FStar.Seq.Base.index s' i} m <= i /\ i < n ==> FStar.Seq.Base.index s i == FStar.Seq.Base.index s' i)
{ "end_col": 31, "end_line": 276, "start_col": 3, "start_line": 272 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); ()
val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) let nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) =
false
null
true
let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.squash", "Prims.int", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
[]
Vale.AES.GCTR.nat32_xor_bytewise_2_helper3
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s') (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
{ "end_col": 4, "end_line": 408, "start_col": 3, "start_line": 403 }
FStar.Pervasives.Lemma
val gctr_encrypt_length (icb_BE: quad32) (plain: gctr_plain_LE) (alg: algorithm) (key: aes_key_LE alg) : Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () )
val gctr_encrypt_length (icb_BE: quad32) (plain: gctr_plain_LE) (alg: algorithm) (key: aes_key_LE alg) : Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] let gctr_encrypt_length (icb_BE: quad32) (plain: gctr_plain_LE) (alg: algorithm) (key: aes_key_LE alg) : Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] =
false
null
true
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then (let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0) else (let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); ())
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_s.gctr_plain_LE", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_s.aes_key_LE", "Prims.op_Equality", "Prims.int", "Vale.AES.GCTR.gctr_encrypt_recursive_length", "FStar.Seq.Base.seq", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.bool", "Vale.Def.Types_s.nat8", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Prims.op_Addition", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.AES.GCTR_s.gctr_encrypt_block", "Prims.op_Division", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Vale.Def.Types_s.le_bytes_to_quad32", "Vale.AES.GCTR_s.pad_to_128_bits", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.op_Subtraction", "Vale.AES.GCTR_s.gctr_encrypt_LE", "Prims.op_Modulus", "Vale.AES.GCTR_s.gctr_encrypt_LE_reveal", "FStar.Pervasives.reveal_opaque", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_encrypt_length (icb_BE: quad32) (plain: gctr_plain_LE) (alg: algorithm) (key: aes_key_LE alg) : Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
[]
Vale.AES.GCTR.gctr_encrypt_length
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb_BE: Vale.Def.Types_s.quad32 -> plain: Vale.AES.GCTR_s.gctr_plain_LE -> alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_s.aes_key_LE alg -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE plain alg key) == FStar.Seq.Base.length plain) [SMTPat (FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE plain alg key))]
{ "end_col": 3, "end_line": 148, "start_col": 2, "start_line": 121 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; ()
val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) let nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) =
false
null
true
let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "Vale.AES.GCTR.nat32_xor_bytewise_3_helper1", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Prims.int", "Prims.op_Addition", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Prims.op_Modulus", "Prims.squash", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
[]
Vale.AES.GCTR.nat32_xor_bytewise_3_helper2
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000) (ensures Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t' /\ Mkfour?.hi2 t == Mkfour?.hi2 t')
{ "end_col": 4, "end_line": 380, "start_col": 3, "start_line": 372 }
FStar.Pervasives.Lemma
val gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures gctr_encrypt_LE icb_BE (le_quad32_to_bytes plain) alg key == le_seq_quad32_to_bytes (create 1 (quad32_xor plain (aes_encrypt_BE alg key icb_BE))) )
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) = gctr_encrypt_LE_reveal (); assert(inc32 icb_BE 0 == icb_BE); let encrypted_icb = aes_encrypt_BE alg key icb_BE in let p = le_quad32_to_bytes plain in let plain_quads_LE = le_bytes_to_seq_quad32 p in let p_seq = create 1 plain in assert (length p == 16); le_bytes_to_seq_quad32_to_bytes_one_quad plain; assert (p_seq == plain_quads_LE); let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1))); assert (head plain_quads_LE == plain); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)) == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))); aes_encrypt_LE_reveal (); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE)); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb); assert(gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); // OBSERVE //assert(gctr_encrypt_LE icb p alg key == cons (quad32_xor plain encrypted_icb) empty); let x = quad32_xor plain encrypted_icb in append_empty_r (create 1 x); // This is the missing piece ()
val gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures gctr_encrypt_LE icb_BE (le_quad32_to_bytes plain) alg key == le_seq_quad32_to_bytes (create 1 (quad32_xor plain (aes_encrypt_BE alg key icb_BE))) ) let gctr_encrypt_one_block (icb_BE plain: quad32) (alg: algorithm) (key: seq nat32) =
false
null
true
gctr_encrypt_LE_reveal (); assert (inc32 icb_BE 0 == icb_BE); let encrypted_icb = aes_encrypt_BE alg key icb_BE in let p = le_quad32_to_bytes plain in let plain_quads_LE = le_bytes_to_seq_quad32 p in let p_seq = create 1 plain in assert (length p == 16); le_bytes_to_seq_quad32_to_bytes_one_quad plain; assert (p_seq == plain_quads_LE); let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1))); assert (head plain_quads_LE == plain); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)) == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))); aes_encrypt_LE_reveal (); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE)); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb); assert (gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); let x = quad32_xor plain encrypted_icb in append_empty_r (create 1 x); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Prims.unit", "FStar.Seq.Base.append_empty_r", "FStar.Seq.Base.create", "Vale.Def.Types_s.quad32_xor", "Prims._assert", "Prims.eq2", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "FStar.Seq.Properties.tail", "FStar.Seq.Base.empty", "Vale.AES.GCTR_s.gctr_encrypt_block", "FStar.Seq.Properties.head", "Vale.AES.GCTR.aes_encrypt_BE", "Vale.AES.AES_s.aes_encrypt_LE_reveal", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.GCTR_s.inc32", "FStar.Seq.Properties.cons", "Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes_one_quad", "Prims.int", "FStar.Seq.Base.length", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Vale.Def.Words_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.AES.GCTR_s.gctr_encrypt_LE_reveal" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); () let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s) = assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); () let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int): Lemma(let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) = let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in if s = q_bytes_prefix then ( // s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s) // q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i le_quad32_to_bytes_to_quad32 (pad_to_128_bits s); slice_pad_to_128_bits s; quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s); //assert (equal s_cipher_bytes q_cipher_bytes); () ) else (); () #reset-options "--z3rlimit 30" open FStar.Seq.Properties let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) = gctr_encrypt_LE_reveal (); let num_blocks = num_bytes / 16 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in step1 plain num_bytes; let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in let final_p = index plain num_blocks in step2 s final_p icb_BE alg key num_blocks; let num_extra = num_bytes % 16 in let full_bytes_len = num_bytes - num_extra in let full_blocks, final_block = split plain_bytes full_bytes_len in assert (full_bytes_len % 16 == 0); assert (length full_blocks == full_bytes_len); let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes assert (length s == num_extra); let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in le_seq_quad32_to_bytes_tail_prefix plain num_bytes; assert (q_prefix == s); assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes le_seq_quad32_to_bytes_tail_prefix cipher num_bytes; assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks; assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16)); assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes; assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @| slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes == slice (le_seq_quad32_to_bytes cipher) 0 num_bytes); assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); ()
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key) (ensures gctr_encrypt_LE icb_BE (le_quad32_to_bytes plain) alg key == le_seq_quad32_to_bytes (create 1 (quad32_xor plain (aes_encrypt_BE alg key icb_BE))) )
[]
Vale.AES.GCTR.gctr_encrypt_one_block
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb_BE: Vale.Def.Types_s.quad32 -> plain: Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key) (ensures Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE (Vale.Def.Types_s.le_quad32_to_bytes plain) alg key == Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create 1 (Vale.Def.Types_s.quad32_xor plain (Vale.AES.GCTR.aes_encrypt_BE alg key icb_BE))))
{ "end_col": 4, "end_line": 724, "start_col": 2, "start_line": 696 }
FStar.Pervasives.Lemma
val lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes; == { append_distributes_le_seq_quad32_to_bytes s bytes } slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) } le_seq_quad32_to_bytes s; == { assert (length (le_seq_quad32_to_bytes s) == num_bytes) } slice (le_seq_quad32_to_bytes s) 0 num_bytes; }; () )
val lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) let lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) =
false
null
true
if num_bytes > (length s) * 16 then (()) else (calc ( == ) { slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes; ( == ) { append_distributes_le_seq_quad32_to_bytes s bytes } slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes; ( == ) { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) } le_seq_quad32_to_bytes s; ( == ) { assert (length (le_seq_quad32_to_bytes s) == num_bytes) } slice (le_seq_quad32_to_bytes s) 0 num_bytes; }; ())
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "Prims.bool", "Prims.unit", "FStar.Calc.calc_finish", "Vale.Def.Types_s.nat8", "Prims.eq2", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.append", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Arch.Types.append_distributes_le_seq_quad32_to_bytes", "Prims.squash", "Vale.Lib.Seqs.lemma_slice_first_exactly_in_append", "Prims._assert", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.int", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); () let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s) = assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); () let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int): Lemma(let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) = let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in if s = q_bytes_prefix then ( // s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s) // q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i le_quad32_to_bytes_to_quad32 (pad_to_128_bits s); slice_pad_to_128_bits s; quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s); //assert (equal s_cipher_bytes q_cipher_bytes); () ) else (); () #reset-options "--z3rlimit 30" open FStar.Seq.Properties let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) = gctr_encrypt_LE_reveal (); let num_blocks = num_bytes / 16 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in step1 plain num_bytes; let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in let final_p = index plain num_blocks in step2 s final_p icb_BE alg key num_blocks; let num_extra = num_bytes % 16 in let full_bytes_len = num_bytes - num_extra in let full_blocks, final_block = split plain_bytes full_bytes_len in assert (full_bytes_len % 16 == 0); assert (length full_blocks == full_bytes_len); let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes assert (length s == num_extra); let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in le_seq_quad32_to_bytes_tail_prefix plain num_bytes; assert (q_prefix == s); assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes le_seq_quad32_to_bytes_tail_prefix cipher num_bytes; assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks; assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16)); assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes; assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @| slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes == slice (le_seq_quad32_to_bytes cipher) 0 num_bytes); assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); () let gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) = gctr_encrypt_LE_reveal (); assert(inc32 icb_BE 0 == icb_BE); let encrypted_icb = aes_encrypt_BE alg key icb_BE in let p = le_quad32_to_bytes plain in let plain_quads_LE = le_bytes_to_seq_quad32 p in let p_seq = create 1 plain in assert (length p == 16); le_bytes_to_seq_quad32_to_bytes_one_quad plain; assert (p_seq == plain_quads_LE); let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1))); assert (head plain_quads_LE == plain); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)) == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))); aes_encrypt_LE_reveal (); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE)); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb); assert(gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); // OBSERVE //assert(gctr_encrypt_LE icb p alg key == cons (quad32_xor plain encrypted_icb) empty); let x = quad32_xor plain encrypted_icb in append_empty_r (create 1 x); // This is the missing piece () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
[]
Vale.AES.GCTR.lemma_length_simplifier
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> t: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> num_bytes: Prims.nat -> FStar.Pervasives.Lemma (requires t == (match num_bytes > FStar.Seq.Base.length s * 16 with | true -> FStar.Seq.Base.append s bytes | _ -> s) /\ (num_bytes <= FStar.Seq.Base.length s * 16 ==> num_bytes == FStar.Seq.Base.length s * 16) /\ FStar.Seq.Base.length s * 16 <= num_bytes /\ num_bytes < FStar.Seq.Base.length s * 16 + 16 /\ FStar.Seq.Base.length bytes == 1) (ensures FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes t) 0 num_bytes == FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.append s bytes )) 0 num_bytes)
{ "end_col": 3, "end_line": 751, "start_col": 2, "start_line": 738 }
FStar.Pervasives.Lemma
val gctr_bytes_helper (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes:nat) (iv_BE:quad32) : Lemma (requires length p128 * 16 < pow2_32 /\ length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ is_aes_key_LE alg key /\ // Ensured by Gctr_core_opt gctr_partial_def alg (length p128) p128 c128 key iv_BE /\ (p_num_bytes > length p128 * 16 ==> index c_bytes 0 == gctr_encrypt_block (inc32 iv_BE (length p128)) (index p_bytes 0) alg key 0)) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in is_gctr_plain_LE plain_bytes /\ cipher_bytes == gctr_encrypt_LE iv_BE plain_bytes alg key))
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_bytes_helper alg key p128 p_bytes c128 c_bytes p_num_bytes iv_BE = let icb_BE_inc = inc32 iv_BE (length p128) in assert (gctr_encrypt_block icb_BE_inc (index p_bytes 0) alg key 0 == gctr_encrypt_block iv_BE (index p_bytes 0) alg key (length p128)); //assert (gctr_partial_def alg 1 p_bytes c_bytes key icb_BE_inc); gctr_partial_reveal (); if p_num_bytes = length p128 * 16 then ( gctr_partial_completed alg p128 c128 key iv_BE; gctr_partial_to_full_basic iv_BE p128 alg key c128; assert (le_seq_quad32_to_bytes c128 == gctr_encrypt_LE iv_BE (le_seq_quad32_to_bytes p128) alg key); assert (equal (slice (le_seq_quad32_to_bytes p128) 0 p_num_bytes) (le_seq_quad32_to_bytes p128)); assert (equal (slice (le_seq_quad32_to_bytes c128) 0 p_num_bytes) (le_seq_quad32_to_bytes c128)); () ) else ( aes_encrypt_LE_reveal (); lemma_gctr_partial_append alg (length p128) 1 p128 c128 p_bytes c_bytes key iv_BE icb_BE_inc; let plain = append p128 p_bytes in let cipher = append c128 c_bytes in let num_blocks = p_num_bytes / 16 in //gctr_partial_completed alg plain cipher key iv_BE; gctr_partial_completed alg p128 c128 key iv_BE; assert (equal (slice plain 0 num_blocks) p128); assert (equal (slice cipher 0 num_blocks) c128); gctr_partial_to_full_advanced iv_BE (append p128 p_bytes) (append c128 c_bytes) alg key p_num_bytes ); lemma_length_simplifier p128 p_bytes (if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128) p_num_bytes; lemma_length_simplifier c128 c_bytes (if p_num_bytes > length c128 * 16 then append c128 c_bytes else c128) p_num_bytes; ()
val gctr_bytes_helper (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes:nat) (iv_BE:quad32) : Lemma (requires length p128 * 16 < pow2_32 /\ length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ is_aes_key_LE alg key /\ // Ensured by Gctr_core_opt gctr_partial_def alg (length p128) p128 c128 key iv_BE /\ (p_num_bytes > length p128 * 16 ==> index c_bytes 0 == gctr_encrypt_block (inc32 iv_BE (length p128)) (index p_bytes 0) alg key 0)) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in is_gctr_plain_LE plain_bytes /\ cipher_bytes == gctr_encrypt_LE iv_BE plain_bytes alg key)) let gctr_bytes_helper alg key p128 p_bytes c128 c_bytes p_num_bytes iv_BE =
false
null
true
let icb_BE_inc = inc32 iv_BE (length p128) in assert (gctr_encrypt_block icb_BE_inc (index p_bytes 0) alg key 0 == gctr_encrypt_block iv_BE (index p_bytes 0) alg key (length p128)); gctr_partial_reveal (); if p_num_bytes = length p128 * 16 then (gctr_partial_completed alg p128 c128 key iv_BE; gctr_partial_to_full_basic iv_BE p128 alg key c128; assert (le_seq_quad32_to_bytes c128 == gctr_encrypt_LE iv_BE (le_seq_quad32_to_bytes p128) alg key); assert (equal (slice (le_seq_quad32_to_bytes p128) 0 p_num_bytes) (le_seq_quad32_to_bytes p128)); assert (equal (slice (le_seq_quad32_to_bytes c128) 0 p_num_bytes) (le_seq_quad32_to_bytes c128)); ()) else (aes_encrypt_LE_reveal (); lemma_gctr_partial_append alg (length p128) 1 p128 c128 p_bytes c_bytes key iv_BE icb_BE_inc; let plain = append p128 p_bytes in let cipher = append c128 c_bytes in let num_blocks = p_num_bytes / 16 in gctr_partial_completed alg p128 c128 key iv_BE; assert (equal (slice plain 0 num_blocks) p128); assert (equal (slice cipher 0 num_blocks) c128); gctr_partial_to_full_advanced iv_BE (append p128 p_bytes) (append c128 c_bytes) alg key p_num_bytes); lemma_length_simplifier p128 p_bytes (if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128) p_num_bytes; lemma_length_simplifier c128 c_bytes (if p_num_bytes > length c128 * 16 then append c128 c_bytes else c128) p_num_bytes; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.unit", "Vale.AES.GCTR.lemma_length_simplifier", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "FStar.Seq.Base.append", "Prims.bool", "Prims.op_Equality", "Prims.int", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Prims.eq2", "Vale.AES.GCTR_s.gctr_encrypt_LE", "Vale.AES.GCTR.gctr_partial_to_full_basic", "Vale.AES.GCTR.gctr_partial_completed", "Vale.AES.GCTR.gctr_partial_to_full_advanced", "Prims.op_Division", "Vale.AES.GCTR.lemma_gctr_partial_append", "Vale.AES.AES_s.aes_encrypt_LE_reveal", "Vale.AES.GCTR.gctr_partial_reveal", "Vale.AES.GCTR_s.gctr_encrypt_block", "FStar.Seq.Base.index", "Vale.AES.GCTR_s.inc32" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); () let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s) = assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); () let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int): Lemma(let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) = let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in if s = q_bytes_prefix then ( // s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s) // q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i le_quad32_to_bytes_to_quad32 (pad_to_128_bits s); slice_pad_to_128_bits s; quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s); //assert (equal s_cipher_bytes q_cipher_bytes); () ) else (); () #reset-options "--z3rlimit 30" open FStar.Seq.Properties let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) = gctr_encrypt_LE_reveal (); let num_blocks = num_bytes / 16 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in step1 plain num_bytes; let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in let final_p = index plain num_blocks in step2 s final_p icb_BE alg key num_blocks; let num_extra = num_bytes % 16 in let full_bytes_len = num_bytes - num_extra in let full_blocks, final_block = split plain_bytes full_bytes_len in assert (full_bytes_len % 16 == 0); assert (length full_blocks == full_bytes_len); let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes assert (length s == num_extra); let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in le_seq_quad32_to_bytes_tail_prefix plain num_bytes; assert (q_prefix == s); assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes le_seq_quad32_to_bytes_tail_prefix cipher num_bytes; assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks; assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16)); assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes; assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @| slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes == slice (le_seq_quad32_to_bytes cipher) 0 num_bytes); assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); () let gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) = gctr_encrypt_LE_reveal (); assert(inc32 icb_BE 0 == icb_BE); let encrypted_icb = aes_encrypt_BE alg key icb_BE in let p = le_quad32_to_bytes plain in let plain_quads_LE = le_bytes_to_seq_quad32 p in let p_seq = create 1 plain in assert (length p == 16); le_bytes_to_seq_quad32_to_bytes_one_quad plain; assert (p_seq == plain_quads_LE); let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1))); assert (head plain_quads_LE == plain); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)) == (let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE))); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))); aes_encrypt_LE_reveal (); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE)); assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb); assert(gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); // OBSERVE //assert(gctr_encrypt_LE icb p alg key == cons (quad32_xor plain encrypted_icb) empty); let x = quad32_xor plain encrypted_icb in append_empty_r (create 1 x); // This is the missing piece () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes == slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes; == { append_distributes_le_seq_quad32_to_bytes s bytes } slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) } le_seq_quad32_to_bytes s; == { assert (length (le_seq_quad32_to_bytes s) == num_bytes) } slice (le_seq_quad32_to_bytes s) 0 num_bytes; }; () )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_bytes_helper (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes:nat) (iv_BE:quad32) : Lemma (requires length p128 * 16 < pow2_32 /\ length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ is_aes_key_LE alg key /\ // Ensured by Gctr_core_opt gctr_partial_def alg (length p128) p128 c128 key iv_BE /\ (p_num_bytes > length p128 * 16 ==> index c_bytes 0 == gctr_encrypt_block (inc32 iv_BE (length p128)) (index p_bytes 0) alg key 0)) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in is_gctr_plain_LE plain_bytes /\ cipher_bytes == gctr_encrypt_LE iv_BE plain_bytes alg key))
[]
Vale.AES.GCTR.gctr_bytes_helper
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_num_bytes: Prims.nat -> iv_BE: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.AES.GCTR.gctr_partial_def alg (FStar.Seq.Base.length p128) p128 c128 key iv_BE /\ (p_num_bytes > FStar.Seq.Base.length p128 * 16 ==> FStar.Seq.Base.index c_bytes 0 == Vale.AES.GCTR_s.gctr_encrypt_block (Vale.AES.GCTR_s.inc32 iv_BE (FStar.Seq.Base.length p128)) (FStar.Seq.Base.index p_bytes 0) alg key 0)) (ensures (let plain_raw_quads = FStar.Seq.Base.append p128 p_bytes in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append c128 c_bytes in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in Vale.AES.GCTR_s.is_gctr_plain_LE plain_bytes /\ cipher_bytes == Vale.AES.GCTR_s.gctr_encrypt_LE iv_BE plain_bytes alg key))
{ "end_col": 4, "end_line": 781, "start_col": 75, "start_line": 753 }
FStar.Pervasives.Lemma
val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain >= bound /\ length cipher >= bound /\ length plain' >= bound /\ length cipher' >= bound /\ slice plain 0 bound == slice plain' 0 bound /\ slice cipher 0 bound == slice cipher' 0 bound) (ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); ()
val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain >= bound /\ length cipher >= bound /\ length plain' >= bound /\ length cipher' >= bound /\ slice plain 0 bound == slice plain' 0 bound /\ slice cipher 0 bound == slice cipher' 0 bound) (ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb) let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
false
null
true
gctr_partial_reveal (); assert (forall i. 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i. 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i. 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i. 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.unit", "Prims._assert", "Prims.l_Forall", "Prims.int", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.eq2", "FStar.Seq.Base.index", "Vale.AES.GCTR.gctr_partial_reveal" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); ()
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain >= bound /\ length cipher >= bound /\ length plain' >= bound /\ length cipher' >= bound /\ slice plain 0 bound == slice plain' 0 bound /\ slice cipher 0 bound == slice cipher' 0 bound) (ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb)
[]
Vale.AES.GCTR.gctr_partial_opaque_ignores_postfix
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> bound: Vale.Def.Types_s.nat32 -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> plain': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> icb: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key /\ FStar.Seq.Base.length plain >= bound /\ FStar.Seq.Base.length cipher >= bound /\ FStar.Seq.Base.length plain' >= bound /\ FStar.Seq.Base.length cipher' >= bound /\ FStar.Seq.Base.slice plain 0 bound == FStar.Seq.Base.slice plain' 0 bound /\ FStar.Seq.Base.slice cipher 0 bound == FStar.Seq.Base.slice cipher' 0 bound) (ensures Vale.AES.GCTR.gctr_partial alg bound plain cipher key icb <==> Vale.AES.GCTR.gctr_partial alg bound plain' cipher' key icb)
{ "end_col": 4, "end_line": 68, "start_col": 2, "start_line": 62 }
FStar.Pervasives.Lemma
val gctr_indexed_helper (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j. {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)))))) (decreases %[length plain])
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper
val gctr_indexed_helper (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j. {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)))))) (decreases %[length plain]) let rec gctr_indexed_helper (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j. {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)))))) (decreases %[length plain]) =
false
null
true
if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i + 1) in let helper (j: int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j))))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then (gctr_indexed_helper icb tl alg key (i + 1); assert (index r_cipher (j - 1) == quad32_xor (index tl (j - 1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1))))) in FStar.Classical.forall_intro helper
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma", "" ]
[ "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_s.gctr_plain_internal_LE", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_s.aes_key_LE", "Prims.int", "Prims.op_Equality", "FStar.Seq.Base.length", "Prims.bool", "FStar.Classical.forall_intro", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.eq2", "FStar.Seq.Base.index", "Vale.Def.Types_s.quad32_xor", "Vale.AES.GCTR.aes_encrypt_BE", "Vale.AES.GCTR_s.inc32", "Prims.op_Addition", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_AmpAmp", "Prims._assert", "Prims.op_Subtraction", "Vale.AES.GCTR.gctr_indexed_helper", "Vale.AES.AES_s.aes_encrypt_LE_reveal", "FStar.Seq.Base.seq", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "FStar.Seq.Properties.tail", "Prims.nat", "Prims.l_Forall", "Prims.op_GreaterThanOrEqual" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain])
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_indexed_helper (icb: quad32) (plain: gctr_plain_internal_LE) (alg: algorithm) (key: aes_key_LE alg) (i: int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j. {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)))))) (decreases %[length plain])
[ "recursion" ]
Vale.AES.GCTR.gctr_indexed_helper
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb: Vale.Def.Types_s.quad32 -> plain: Vale.AES.GCTR_s.gctr_plain_internal_LE -> alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_s.aes_key_LE alg -> i: Prims.int -> FStar.Pervasives.Lemma (ensures (let cipher = Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key i in FStar.Seq.Base.length cipher == FStar.Seq.Base.length plain /\ (forall (j: i: Prims.int { i >= 0 /\ i < FStar.Seq.Base.length plain /\ (i >= 0) /\ (i < FStar.Seq.Base.length cipher) }). {:pattern FStar.Seq.Base.index cipher j} 0 <= j /\ j < FStar.Seq.Base.length plain ==> FStar.Seq.Base.index cipher j == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain j) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR_s.inc32 icb (i + j)))))) (decreases FStar.Seq.Base.length plain)
{ "end_col": 41, "end_line": 174, "start_col": 2, "start_line": 160 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); ()
val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) let nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) =
false
null
true
let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Prims.squash", "Prims.int", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
[]
Vale.AES.GCTR.nat32_xor_bytewise_1_helper3
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ Mkfour?.lo0 s == Mkfour?.lo0 s') (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
{ "end_col": 4, "end_line": 394, "start_col": 3, "start_line": 389 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n)) (ensures (forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i))
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; ()
val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n)) (ensures (forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) let nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n)) (ensures (forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) =
false
null
true
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Types_s.nat8", "Prims.nat", "Prims.unit", "Vale.AES.GCTR.lemma_slice_orig_index", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Prims.op_Equality", "Prims.int", "Vale.AES.GCTR.nat32_xor_bytewise_4", "Vale.Def.Words.Seq_s.seq_to_four_LE", "Prims.bool", "Vale.AES.GCTR.nat32_xor_bytewise_3", "Vale.AES.GCTR.nat32_xor_bytewise_2", "Vale.AES.GCTR.nat32_xor_bytewise_1", "Vale.Def.Words_s.natN", "Vale.Def.Types_s.ixor", "Vale.Def.Words_s.pow2_32", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThan", "Prims.eq2", "FStar.Seq.Base.index", "Prims.l_and", "Prims.op_LessThanOrEqual", "Vale.Def.Words.Four_s.four_to_nat", "Prims.pow2", "FStar.Mul.op_Star", "Prims.squash", "Prims.l_Forall", "Prims.op_LessThan", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n)) (ensures (forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i))
[]
Vale.AES.GCTR.nat32_xor_bytewise
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> m: Vale.Def.Types_s.nat32 -> s: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 -> s': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 -> t: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 -> t': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 -> n: Prims.nat -> FStar.Pervasives.Lemma (requires n <= 4 /\ k == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE s) /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE s') /\ Vale.Def.Types_s.ixor k m == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE t) /\ Vale.Def.Types_s.ixor k' m == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE t') /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 n) (FStar.Seq.Base.slice s' 0 n)) (ensures forall (i: Prims.nat). {:pattern FStar.Seq.Base.index t i\/FStar.Seq.Base.index t' i} i < n ==> FStar.Seq.Base.index t i == FStar.Seq.Base.index t' i)
{ "end_col": 4, "end_line": 557, "start_col": 2, "start_line": 545 }
FStar.Pervasives.Lemma
val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma (requires is_aes_key_LE alg key /\ 1 <= num_bytes /\ num_bytes < 16 * length plain /\ 16 * (length plain - 1) < num_bytes /\ num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\ length plain == length cipher /\ ( let num_blocks = num_bytes / 16 in slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\ index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks) ) (ensures ( let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in cipher_bytes == gctr_encrypt_LE icb_BE plain_bytes alg key ))
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) = gctr_encrypt_LE_reveal (); let num_blocks = num_bytes / 16 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in step1 plain num_bytes; let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in let final_p = index plain num_blocks in step2 s final_p icb_BE alg key num_blocks; let num_extra = num_bytes % 16 in let full_bytes_len = num_bytes - num_extra in let full_blocks, final_block = split plain_bytes full_bytes_len in assert (full_bytes_len % 16 == 0); assert (length full_blocks == full_bytes_len); let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes assert (length s == num_extra); let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in le_seq_quad32_to_bytes_tail_prefix plain num_bytes; assert (q_prefix == s); assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes le_seq_quad32_to_bytes_tail_prefix cipher num_bytes; assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks; assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16)); assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes; assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @| slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes == slice (le_seq_quad32_to_bytes cipher) 0 num_bytes); assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); ()
val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma (requires is_aes_key_LE alg key /\ 1 <= num_bytes /\ num_bytes < 16 * length plain /\ 16 * (length plain - 1) < num_bytes /\ num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\ length plain == length cipher /\ ( let num_blocks = num_bytes / 16 in slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\ index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks) ) (ensures ( let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in cipher_bytes == gctr_encrypt_LE icb_BE plain_bytes alg key )) let gctr_partial_to_full_advanced (icb_BE: quad32) (plain cipher: seq quad32) (alg: algorithm) (key: seq nat32) (num_bytes: nat) =
false
null
true
gctr_encrypt_LE_reveal (); let num_blocks = num_bytes / 16 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in step1 plain num_bytes; let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in let final_p = index plain num_blocks in step2 s final_p icb_BE alg key num_blocks; let num_extra = num_bytes % 16 in let full_bytes_len = num_bytes - num_extra in let full_blocks, final_block = split plain_bytes full_bytes_len in assert (full_bytes_len % 16 == 0); assert (length full_blocks == full_bytes_len); let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in assert (cipher_quads_LE == slice cipher 0 num_blocks); let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks) ); assert (length s == num_extra); let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in le_seq_quad32_to_bytes_tail_prefix plain num_bytes; assert (q_prefix == s); assert (final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); le_seq_quad32_to_bytes_tail_prefix cipher num_bytes; assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks; assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16)); assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra == slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes); slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes; assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @| slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes == slice (le_seq_quad32_to_bytes cipher) 0 num_bytes); assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.nat32", "Prims.nat", "Vale.Def.Types_s.nat8", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.op_At_Bar", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_quad32_to_bytes", "FStar.Seq.Base.index", "FStar.Mul.op_Star", "Vale.Lib.Seqs.slice_append_adds", "FStar.Seq.Base.length", "Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes0", "Vale.AES.GCM_helpers.le_seq_quad32_to_bytes_tail_prefix", "Vale.Def.Words_s.nat8", "Prims.int", "Vale.AES.GCTR_s.gctr_encrypt_block", "Prims.op_Division", "Vale.AES.GCTR_s.gctr_encrypt_recursive", "Vale.Def.Types_s.le_bytes_to_quad32", "Vale.AES.GCTR_s.pad_to_128_bits", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.op_Modulus", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.op_Subtraction", "Vale.AES.GCTR.step2", "Vale.AES.GCTR.step1", "Vale.AES.GCTR_s.gctr_encrypt_LE_reveal" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); () let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) : Lemma(slice (pad_to_128_bits s) 0 (length s) == s) = assert (length s % 16 == length s); assert (equal s (slice (pad_to_128_bits s) 0 (length s))); () let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int): Lemma(let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) = let q_bytes = le_quad32_to_bytes q in let q_bytes_prefix = slice q_bytes 0 (length s) in let q_cipher = gctr_encrypt_block icb_BE q alg key i in let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in if s = q_bytes_prefix then ( // s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s) // = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s) // q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i le_quad32_to_bytes_to_quad32 (pad_to_128_bits s); slice_pad_to_128_bits s; quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s); //assert (equal s_cipher_bytes q_cipher_bytes); () ) else (); () #reset-options "--z3rlimit 30" open FStar.Seq.Properties
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma (requires is_aes_key_LE alg key /\ 1 <= num_bytes /\ num_bytes < 16 * length plain /\ 16 * (length plain - 1) < num_bytes /\ num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\ length plain == length cipher /\ ( let num_blocks = num_bytes / 16 in slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\ index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks) ) (ensures ( let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in cipher_bytes == gctr_encrypt_LE icb_BE plain_bytes alg key ))
[]
Vale.AES.GCTR.gctr_partial_to_full_advanced
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
icb_BE: Vale.Def.Types_s.quad32 -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> num_bytes: Prims.nat -> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key /\ 1 <= num_bytes /\ num_bytes < 16 * FStar.Seq.Base.length plain /\ 16 * (FStar.Seq.Base.length plain - 1) < num_bytes /\ num_bytes % 16 <> 0 /\ num_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\ (let num_blocks = num_bytes / 16 in FStar.Seq.Base.slice cipher 0 num_blocks == Vale.AES.GCTR_s.gctr_encrypt_recursive icb_BE (FStar.Seq.Base.slice plain 0 num_blocks) alg key 0 /\ FStar.Seq.Base.index cipher num_blocks == Vale.AES.GCTR_s.gctr_encrypt_block icb_BE (FStar.Seq.Base.index plain num_blocks) alg key num_blocks)) (ensures (let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain) 0 num_bytes in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher) 0 num_bytes in cipher_bytes == Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE plain_bytes alg key))
{ "end_col": 4, "end_line": 692, "start_col": 2, "start_line": 646 }
FStar.Pervasives.Lemma
val gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires length plain >= bound + 6 /\ length cipher >= bound + 6 /\ is_aes_key_LE alg key /\ bound + 6 < pow2_32 /\ gctr_partial alg bound plain cipher key icb /\ index cipher (bound + 0) == quad32_xor (index plain (bound + 0)) (aes_encrypt_BE alg key (inc32lite icb (bound + 0))) /\ index cipher (bound + 1) == quad32_xor (index plain (bound + 1)) (aes_encrypt_BE alg key (inc32lite icb (bound + 1))) /\ index cipher (bound + 2) == quad32_xor (index plain (bound + 2)) (aes_encrypt_BE alg key (inc32lite icb (bound + 2))) /\ index cipher (bound + 3) == quad32_xor (index plain (bound + 3)) (aes_encrypt_BE alg key (inc32lite icb (bound + 3))) /\ index cipher (bound + 4) == quad32_xor (index plain (bound + 4)) (aes_encrypt_BE alg key (inc32lite icb (bound + 4))) /\ index cipher (bound + 5) == quad32_xor (index plain (bound + 5)) (aes_encrypt_BE alg key (inc32lite icb (bound + 5))) ) (ensures gctr_partial alg (bound + 6) plain cipher key icb)
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); ()
val gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires length plain >= bound + 6 /\ length cipher >= bound + 6 /\ is_aes_key_LE alg key /\ bound + 6 < pow2_32 /\ gctr_partial alg bound plain cipher key icb /\ index cipher (bound + 0) == quad32_xor (index plain (bound + 0)) (aes_encrypt_BE alg key (inc32lite icb (bound + 0))) /\ index cipher (bound + 1) == quad32_xor (index plain (bound + 1)) (aes_encrypt_BE alg key (inc32lite icb (bound + 1))) /\ index cipher (bound + 2) == quad32_xor (index plain (bound + 2)) (aes_encrypt_BE alg key (inc32lite icb (bound + 2))) /\ index cipher (bound + 3) == quad32_xor (index plain (bound + 3)) (aes_encrypt_BE alg key (inc32lite icb (bound + 3))) /\ index cipher (bound + 4) == quad32_xor (index plain (bound + 4)) (aes_encrypt_BE alg key (inc32lite icb (bound + 4))) /\ index cipher (bound + 5) == quad32_xor (index plain (bound + 5)) (aes_encrypt_BE alg key (inc32lite icb (bound + 5))) ) (ensures gctr_partial alg (bound + 6) plain cipher key icb) let gctr_partial_extend6 (alg: algorithm) (bound: nat) (plain cipher: seq quad32) (key: seq nat32) (icb: quad32) =
false
null
true
gctr_partial_reveal (); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.AES.AES_common_s.algorithm", "Prims.nat", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Prims.unit", "Vale.AES.GCTR.gctr_partial_reveal" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires length plain >= bound + 6 /\ length cipher >= bound + 6 /\ is_aes_key_LE alg key /\ bound + 6 < pow2_32 /\ gctr_partial alg bound plain cipher key icb /\ index cipher (bound + 0) == quad32_xor (index plain (bound + 0)) (aes_encrypt_BE alg key (inc32lite icb (bound + 0))) /\ index cipher (bound + 1) == quad32_xor (index plain (bound + 1)) (aes_encrypt_BE alg key (inc32lite icb (bound + 1))) /\ index cipher (bound + 2) == quad32_xor (index plain (bound + 2)) (aes_encrypt_BE alg key (inc32lite icb (bound + 2))) /\ index cipher (bound + 3) == quad32_xor (index plain (bound + 3)) (aes_encrypt_BE alg key (inc32lite icb (bound + 3))) /\ index cipher (bound + 4) == quad32_xor (index plain (bound + 4)) (aes_encrypt_BE alg key (inc32lite icb (bound + 4))) /\ index cipher (bound + 5) == quad32_xor (index plain (bound + 5)) (aes_encrypt_BE alg key (inc32lite icb (bound + 5))) ) (ensures gctr_partial alg (bound + 6) plain cipher key icb)
[]
Vale.AES.GCTR.gctr_partial_extend6
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> bound: Prims.nat -> plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> icb: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length plain >= bound + 6 /\ FStar.Seq.Base.length cipher >= bound + 6 /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ bound + 6 < Vale.Def.Words_s.pow2_32 /\ Vale.AES.GCTR.gctr_partial alg bound plain cipher key icb /\ FStar.Seq.Base.index cipher (bound + 0) == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 0)) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 0))) /\ FStar.Seq.Base.index cipher (bound + 1) == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 1)) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 1))) /\ FStar.Seq.Base.index cipher (bound + 2) == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 2)) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 2))) /\ FStar.Seq.Base.index cipher (bound + 3) == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 3)) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 3))) /\ FStar.Seq.Base.index cipher (bound + 4) == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 4)) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 4))) /\ FStar.Seq.Base.index cipher (bound + 5) == Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 5)) (Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 5)))) (ensures Vale.AES.GCTR.gctr_partial alg (bound + 6) plain cipher key icb)
{ "end_col": 4, "end_line": 73, "start_col": 2, "start_line": 72 }
FStar.Pervasives.Lemma
val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t')
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); ()
val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') let nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') =
false
null
true
let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.four_to_nat_unfold", "Vale.Def.Words_s.nat8", "Prims.l_and", "Vale.Def.Words_s.pow2_32", "Vale.Def.Types_s.ixor", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' )
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t')
[]
Vale.AES.GCTR.nat32_xor_bytewise_4
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Vale.Def.Types_s.nat32 -> k': Vale.Def.Types_s.nat32 -> x: Vale.Def.Types_s.nat32 -> x': Vale.Def.Types_s.nat32 -> m: Vale.Def.Types_s.nat32 -> s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (requires k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\ x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\ Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\ s == s') (ensures t == t')
{ "end_col": 4, "end_line": 530, "start_col": 3, "start_line": 523 }
FStar.Pervasives.Lemma
val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16}) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n))
[ { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) = let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else ( nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else ( nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else ( nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); () ) ) ); assert (equal (slice t 0 n) (slice t' 0 n)); ()
val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16}) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) let quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16}) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n)) =
false
null
true
let s = le_quad32_to_bytes q in let s' = le_quad32_to_bytes q' in let t = le_quad32_to_bytes (quad32_xor q r) in let t' = le_quad32_to_bytes (quad32_xor q' r) in lemma_slices_le_quad32_to_bytes q; lemma_slices_le_quad32_to_bytes q'; lemma_slices_le_quad32_to_bytes (quad32_xor q r); lemma_slices_le_quad32_to_bytes (quad32_xor q' r); lemma_slice_orig_index s s' 0 n; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n else (nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4; if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4) else (nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4; if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8) else (nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4; nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12); ()))); assert (equal (slice t 0 n) (slice t' 0 n)); ()
{ "checked_file": "Vale.AES.GCTR.fst.checked", "dependencies": [ "Vale.Poly1305.Bitvectors.fsti.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCTR.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "FStar.Seq.Base.slice", "Prims.op_LessThan", "Vale.AES.GCTR.nat32_xor_bytewise", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Types_s.nat32", "Prims.bool", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.op_Subtraction", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Types_s.reverse_bytes_nat32_reveal", "Vale.Def.Types_s.quad32_xor_reveal", "Vale.AES.GCTR.lemma_slice_orig_index", "Vale.AES.Types_helpers.lemma_slices_le_quad32_to_bytes", "Vale.Def.Types_s.quad32_xor", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "Prims.eq2", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCTR open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCM_helpers open FStar.Math.Lemmas open Vale.Lib.Seqs open Vale.AES.Types_helpers #set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" let lemma_counter_init x low64 low8 = Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64; Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff; assert (low8 == low64 % 256); lo64_reveal (); assert_norm (pow2_norm 32 == pow2_32); // OBSERVE assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE assert (low64 % 256 == x.lo0 % 256); () let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) = () let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in assert (plain == empty); assert (cipher == empty); assert (length plain == 0); assert (make_gctr_plain_LE plain == empty); let num_extra = (length (make_gctr_plain_LE plain)) % 16 in assert (num_extra == 0); let plain_quads_LE = le_bytes_to_seq_quad32 plain in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in assert (equal plain_quads_LE empty); // OBSERVE assert (plain_quads_LE == empty); assert (cipher_quads_LE == empty); assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs () let gctr_partial_opaque_init alg plain cipher key icb = gctr_partial_reveal (); () #restart-solver let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = gctr_partial_reveal (); () let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = gctr_partial_reveal (); // OBSERVE: assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i); assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i); () let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_partial_reveal (); () (* let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) (decreases (length s)) = if length s = 0 then empty else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1)) let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (ensures (let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i)) (decreases (length plain_LE)) = let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in if length plain_LE = 0 then ( assert(equal (g) (s)); () ) else ( test icb_BE (tail plain_LE) alg key (i+1); assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1)) ) *) let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain) (decreases %[length plain]) [SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] = if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) #reset-options "--z3rlimit 40" let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE) (alg:algorithm) (key:aes_key_LE alg) : Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain) [SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; gctr_encrypt_LE_reveal (); let num_extra = (length plain) % 16 in let result = gctr_encrypt_LE icb_BE plain alg key in if num_extra = 0 then ( let plain_quads_LE = le_bytes_to_seq_quad32 plain in gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0 ) else ( let full_bytes_len = (length plain) - num_extra in let full_blocks, final_block = split plain full_bytes_len in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0; assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE); assert (length cipher_quads_LE == length full_quads_LE); assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE); assert (16 * length full_quads_LE == length full_blocks); assert (length cipher_bytes_full_LE == length full_blocks); () ) #reset-options let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma (requires True) (ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in length cipher == length plain /\ (forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==> index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))) (decreases %[length plain]) = if length plain = 0 then () else let tl = tail plain in let cipher = gctr_encrypt_recursive icb plain alg key i in let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in let helper (j:int) : Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))) = aes_encrypt_LE_reveal (); if 0 < j && j < length plain then ( gctr_indexed_helper icb tl alg key (i+1); assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE ) else () in FStar.Classical.forall_intro helper let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE) (alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma (requires length cipher == length plain /\ (forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==> index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) ))) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_indexed_helper icb plain alg key 0; let c = gctr_encrypt_recursive icb plain alg key 0 in assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) = gctr_indexed icb plain alg key cipher; () let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma (requires is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\ gctr_partial alg (length cipher) plain cipher key icb ) (ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = gctr_partial_reveal (); gctr_partial_completed alg plain cipher key icb let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) = gctr_encrypt_LE_reveal (); let p = le_seq_quad32_to_bytes plain in assert (length p % 16 == 0); let plain_quads_LE = le_bytes_to_seq_quad32 p in let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in le_bytes_to_seq_quad32_to_bytes plain; () (* Want to show that: slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes == gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ... We know that slice (buffer128_as_seq(mem, out_b) 0 num_blocks == gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ... And we know that: get_mem out_b num_blocks == gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks); Internally gctr_encrypt_LE will compute: full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16) We'd like to show that Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks and Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end, we end up with the same value *) let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma (let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in p_prefix == full_quads_LE) = let num_extra = num_bytes % 16 in let num_blocks = num_bytes / 16 in let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in let p_prefix = slice p 0 num_blocks in assert (length full_blocks == num_blocks * 16); assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16)); assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16)); slice_commutes_le_seq_quad32_to_bytes0 p num_blocks; assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks)); le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks); assert (full_quads_LE == (slice p 0 num_blocks)); () #reset-options "--smtencoding.elim_box true --z3rlimit 30" let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma (requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) (ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i)) = let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) = lemma_index_slice s m n (i - m); lemma_index_slice s' m n (i - m) in Classical.forall_intro aux let lemma_ishl_32 (x:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; FStar.UInt.shift_left_value_lemma #32 x k; () let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) = Vale.Def.TypesNative_s.reveal_ishl 32 x k; Vale.Def.TypesNative_s.reveal_ishl 32 y k; Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k; Vale.Def.TypesNative_s.reveal_ixor 32 x y; Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k); FStar.UInt.shift_left_logxor_lemma #32 x y k; () unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma (requires x == x0 + 0x100 * x1 /\ x' == x0' + 0x100 * x1' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma (requires x == x0 + 0x10000 * x1 /\ x' == x0' + 0x10000 * x1' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma (requires x == x0 + 0x1000000 * x1 /\ x' == x0' + 0x1000000 * x1' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures x0 == x0') = () let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000 ) (ensures t.lo0 == t'.lo0) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x'; () let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t01 = t0 + 0x100 * t1 in let t23 = t2 + 0x100 * t3 in let t01' = t0' + 0x100 * t1' in let t23' = t2' + 0x100 * t3' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x'; () let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x'; () let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 ) (ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) = let Mkfour _ _ _ _ = s in let Mkfour _ _ _ _ = s' in assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s ); assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s'); () let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 ) (ensures t.lo0 == t'.lo0) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_1_helper3 k k' s s'; lemma_ishl_32 k 24; lemma_ishl_32 k' 24; lemma_ishl_32 x 24; lemma_ishl_32 x' 24; lemma_ishl_ixor_32 k m 24; lemma_ishl_ixor_32 k' m 24; assert_norm (pow2 24 == pow2_24); nat32_xor_bytewise_1_helper2 x x' t t'; () let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_2_helper3 k k' s s'; lemma_ishl_32 k 16; lemma_ishl_32 k' 16; lemma_ishl_32 x 16; lemma_ishl_32 x' 16; lemma_ishl_ixor_32 k m 16; lemma_ishl_ixor_32 k' m 16; // assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000); // assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000); // assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16)); // assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16)); // assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16)); // assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16)); nat32_xor_bytewise_2_helper2 x x' t t'; () let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2 ) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in nat32_xor_bytewise_3_helper3 k k' s s'; lemma_ishl_32 k 8; lemma_ishl_32 k' 8; lemma_ishl_32 x 8; lemma_ishl_32 x' 8; lemma_ishl_ixor_32 k m 8; lemma_ishl_ixor_32 k' m 8; nat32_xor_bytewise_3_helper2 x x' t t'; () #reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap" let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s' ) (ensures t == t') = let Mkfour s0 s1 s2 s3 = s in let Mkfour s0' s1' s2' s3' = s' in let Mkfour t0 t1 t2 t3 = t in let Mkfour t0' t1' t2' t3' = t' in assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t'); assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t ); () #reset-options let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma (requires n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\ ixor k m == four_to_nat 8 (seq_to_four_LE t) /\ ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n) ) // (ensures equal (slice t 0 n) (slice t' 0 n)) (ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) = assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0); assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1); assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2); assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3); let x = ixor k m in let x' = ixor k' m in if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t'); assert (equal (slice t 0 n) (slice t' 0 n)); lemma_slice_orig_index t t' 0 n; () let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
false
false
Vale.AES.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16}) : Lemma (requires (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in slice q_bytes 0 n == slice q'_bytes 0 n)) (ensures (let q_bytes = le_quad32_to_bytes q in let q'_bytes = le_quad32_to_bytes q' in let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in slice qr_bytes 0 n == slice q'r_bytes 0 n))
[]
Vale.AES.GCTR.quad32_xor_bytewise
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
q: Vale.Def.Types_s.quad32 -> q': Vale.Def.Types_s.quad32 -> r: Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= 16} -> FStar.Pervasives.Lemma (requires (let q_bytes = Vale.Def.Types_s.le_quad32_to_bytes q in let q'_bytes = Vale.Def.Types_s.le_quad32_to_bytes q' in FStar.Seq.Base.slice q_bytes 0 n == FStar.Seq.Base.slice q'_bytes 0 n)) (ensures (let q_bytes = Vale.Def.Types_s.le_quad32_to_bytes q in let q'_bytes = Vale.Def.Types_s.le_quad32_to_bytes q' in let qr_bytes = Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.quad32_xor q r) in let q'r_bytes = Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.quad32_xor q' r) in FStar.Seq.Base.slice qr_bytes 0 n == FStar.Seq.Base.slice q'r_bytes 0 n))
{ "end_col": 4, "end_line": 598, "start_col": 3, "start_line": 568 }
Prims.Tot
val va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win))
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) = (va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) (va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b) (va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b))
val va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) let va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) =
false
null
false
(va_QProc (va_code_KeyExpansion256Stdcall win) ([ va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem ]) (va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b) (va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b))
{ "checked_file": "Vale.AES.X64.AES256.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AES256.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Memory.buffer128", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AES256.va_code_KeyExpansion256Stdcall", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rRdx", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.AES256.va_wp_KeyExpansion256Stdcall", "Vale.AES.X64.AES256.va_wpProof_KeyExpansion256Stdcall", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AES256 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES256_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansion256Stdcall val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))) [@ va_qattr] let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (()))) val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
false
false
Vale.AES.X64.AES256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win))
[]
Vale.AES.X64.AES256.va_quick_KeyExpansion256Stdcall
{ "file_name": "obj/Vale.AES.X64.AES256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
win: Prims.bool -> input_key_b: Vale.X64.Memory.buffer128 -> output_key_expansion_b: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AES256.va_code_KeyExpansion256Stdcall win)
{ "end_col": 79, "end_line": 119, "start_col": 2, "start_line": 116 }
Prims.Tot
val va_quick_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ()))
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ())) = (va_QProc (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES256EncryptBlock input key round_keys keys_buffer) (va_wpProof_AES256EncryptBlock input key round_keys keys_buffer))
val va_quick_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ())) let va_quick_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ())) =
false
null
false
(va_QProc (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES256EncryptBlock input key round_keys keys_buffer) (va_wpProof_AES256EncryptBlock input key round_keys keys_buffer))
{ "checked_file": "Vale.AES.X64.AES256.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AES256.fsti" }
[ "total" ]
[ "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AES256.va_code_AES256EncryptBlock", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Prims.Nil", "Vale.AES.X64.AES256.va_wp_AES256EncryptBlock", "Vale.AES.X64.AES256.va_wpProof_AES256EncryptBlock", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AES256 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES256_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansion256Stdcall val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))) [@ va_qattr] let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (()))) val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) = (va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) (va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b) (va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)) //-- //-- AES256EncryptBlock val va_code_AES256EncryptBlock : va_dummy:unit -> Tot va_code val va_codegen_success_AES256EncryptBlock : va_dummy:unit -> Tot va_pbool val va_lemma_AES256EncryptBlock : va_b0:va_code -> va_s0:va_state -> input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES256EncryptBlock ()) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (()))) val va_wpProof_AES256EncryptBlock : input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES256EncryptBlock input key round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32))
false
false
Vale.AES.X64.AES256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ()))
[]
Vale.AES.X64.AES256.va_quick_AES256EncryptBlock
{ "file_name": "obj/Vale.AES.X64.AES256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
input: Vale.X64.Decls.quad32 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> keys_buffer: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AES256.va_code_AES256EncryptBlock ())
{ "end_col": 38, "end_line": 170, "start_col": 2, "start_line": 168 }
Prims.Tot
val va_wp_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (())))
val va_wp_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i: nat). i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0: quad32) (va_x_xmm2: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AES256.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AES256.fsti" }
[ "total" ]
[ "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.AES.AES_s.is_aes_key_LE", "Vale.AES.AES_common_s.AES_256", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.AES.AES_s.key_to_round_keys_LE", "Vale.X64.Decls.va_get_xmm", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR8", "Vale.X64.Memory.buffer_addr", "Vale.X64.Memory.vuint128", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.validSrcAddrs128", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Vale.X64.Decls.buffer128_read", "FStar.Seq.Base.index", "Vale.X64.Flags.t", "Vale.Def.Types_s.quad32", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm" ]
[]
module Vale.AES.X64.AES256 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES256_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansion256Stdcall val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))) [@ va_qattr] let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (()))) val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) = (va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) (va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b) (va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)) //-- //-- AES256EncryptBlock val va_code_AES256EncryptBlock : va_dummy:unit -> Tot va_code val va_codegen_success_AES256EncryptBlock : va_dummy:unit -> Tot va_pbool val va_lemma_AES256EncryptBlock : va_b0:va_code -> va_s0:va_state -> input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES256EncryptBlock ()) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32))
false
true
Vale.AES.X64.AES256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_AES256EncryptBlock (input: quad32) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AES256.va_wp_AES256EncryptBlock
{ "file_name": "obj/Vale.AES.X64.AES256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
input: Vale.X64.Decls.quad32 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> keys_buffer: Vale.X64.Memory.buffer128 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 73, "end_line": 156, "start_col": 2, "start_line": 146 }
Prims.Tot
val va_quick_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlockStdcall win))
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_AES256EncryptBlockStdcall (win:bool) (input:quad32) (key:(seq nat32)) (input_buffer:buffer128) (output_buffer:buffer128) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES256EncryptBlockStdcall win)) = (va_QProc (va_code_AES256EncryptBlockStdcall win) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_mem_heaplet 1; va_Mod_reg64 rR8; va_Mod_mem]) (va_wp_AES256EncryptBlockStdcall win input key input_buffer output_buffer keys_buffer) (va_wpProof_AES256EncryptBlockStdcall win input key input_buffer output_buffer keys_buffer))
val va_quick_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlockStdcall win)) let va_quick_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlockStdcall win)) =
false
null
false
(va_QProc (va_code_AES256EncryptBlockStdcall win) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_mem_heaplet 1; va_Mod_reg64 rR8; va_Mod_mem]) (va_wp_AES256EncryptBlockStdcall win input key input_buffer output_buffer keys_buffer) (va_wpProof_AES256EncryptBlockStdcall win input key input_buffer output_buffer keys_buffer))
{ "checked_file": "Vale.AES.X64.AES256.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AES256.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AES256.va_code_AES256EncryptBlockStdcall", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR8", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.AES256.va_wp_AES256EncryptBlockStdcall", "Vale.AES.X64.AES256.va_wpProof_AES256EncryptBlockStdcall", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AES256 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES256_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansion256Stdcall val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))) [@ va_qattr] let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (()))) val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) = (va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) (va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b) (va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)) //-- //-- AES256EncryptBlock val va_code_AES256EncryptBlock : va_dummy:unit -> Tot va_code val va_codegen_success_AES256EncryptBlock : va_dummy:unit -> Tot va_pbool val va_lemma_AES256EncryptBlock : va_b0:va_code -> va_s0:va_state -> input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES256EncryptBlock ()) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (()))) val va_wpProof_AES256EncryptBlock : input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES256EncryptBlock input key round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ())) = (va_QProc (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES256EncryptBlock input key round_keys keys_buffer) (va_wpProof_AES256EncryptBlock input key round_keys keys_buffer)) //-- //-- AES256EncryptBlockStdcall val va_code_AES256EncryptBlockStdcall : win:bool -> Tot va_code val va_codegen_success_AES256EncryptBlockStdcall : win:bool -> Tot va_pbool val va_lemma_AES256EncryptBlockStdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input:quad32 -> key:(seq nat32) -> input_buffer:buffer128 -> output_buffer:buffer128 -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES256EncryptBlockStdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in aesni_enabled /\ sse_enabled /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ Vale.X64.Decls.buffer128_read input_buffer 0 (va_get_mem_heaplet 0 va_s0) == input /\ expanded_key_ptr == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) input_ptr input_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) output_ptr output_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) expanded_key_ptr keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) i)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 output_buffer) (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.X64.Decls.buffer128_read output_buffer 0 (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR8 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@ va_qattr] let va_wp_AES256EncryptBlockStdcall (win:bool) (input:quad32) (key:(seq nat32)) (input_buffer:buffer128) (output_buffer:buffer128) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in aesni_enabled /\ sse_enabled /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ Vale.X64.Decls.buffer128_read input_buffer 0 (va_get_mem_heaplet 0 va_s0) == input /\ expanded_key_ptr == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) input_ptr input_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) output_ptr output_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) expanded_key_ptr keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) i)) /\ (forall (va_x_mem:vale_heap) (va_x_r8:nat64) (va_x_heap1:vale_heap) (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR8 va_x_r8 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 output_buffer) (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.X64.Decls.buffer128_read output_buffer 0 (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input) ==> va_k va_sM (()))) val va_wpProof_AES256EncryptBlockStdcall : win:bool -> input:quad32 -> key:(seq nat32) -> input_buffer:buffer128 -> output_buffer:buffer128 -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES256EncryptBlockStdcall win input key input_buffer output_buffer keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES256EncryptBlockStdcall win) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_mem_heaplet 1; va_Mod_reg64 rR8; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_AES256EncryptBlockStdcall (win:bool) (input:quad32) (key:(seq nat32)) (input_buffer:buffer128) (output_buffer:buffer128) (keys_buffer:buffer128) : (va_quickCode unit
false
false
Vale.AES.X64.AES256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) : (va_quickCode unit (va_code_AES256EncryptBlockStdcall win))
[]
Vale.AES.X64.AES256.va_quick_AES256EncryptBlockStdcall
{ "file_name": "obj/Vale.AES.X64.AES256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
win: Prims.bool -> input: Vale.X64.Decls.quad32 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> input_buffer: Vale.X64.Memory.buffer128 -> output_buffer: Vale.X64.Memory.buffer128 -> keys_buffer: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AES256.va_code_AES256EncryptBlockStdcall win)
{ "end_col": 44, "end_line": 258, "start_col": 2, "start_line": 255 }
Prims.Tot
val va_wp_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_AES256EncryptBlockStdcall (win:bool) (input:quad32) (key:(seq nat32)) (input_buffer:buffer128) (output_buffer:buffer128) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in aesni_enabled /\ sse_enabled /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ Vale.X64.Decls.buffer128_read input_buffer 0 (va_get_mem_heaplet 0 va_s0) == input /\ expanded_key_ptr == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) input_ptr input_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) output_ptr output_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) expanded_key_ptr keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) i)) /\ (forall (va_x_mem:vale_heap) (va_x_r8:nat64) (va_x_heap1:vale_heap) (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR8 va_x_r8 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 output_buffer) (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.X64.Decls.buffer128_read output_buffer 0 (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input) ==> va_k va_sM (())))
val va_wp_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let output_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let input_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let expanded_key_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in aesni_enabled /\ sse_enabled /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ Vale.X64.Decls.buffer128_read input_buffer 0 (va_get_mem_heaplet 0 va_s0) == input /\ expanded_key_ptr == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) input_ptr input_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) output_ptr output_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) expanded_key_ptr keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i: nat). i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) i)) /\ (forall (va_x_mem: vale_heap) (va_x_r8: nat64) (va_x_heap1: vale_heap) (va_x_xmm0: quad32) (va_x_xmm2: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR8 va_x_r8 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ (let output_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let input_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let expanded_key_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 output_buffer) (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.X64.Decls.buffer128_read output_buffer 0 (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AES256.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AES256.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.AES.AES_s.is_aes_key_LE", "Vale.AES.AES_common_s.AES_256", "Prims.eq2", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_get_mem_heaplet", "Prims.int", "Vale.X64.Memory.buffer_addr", "Vale.X64.Memory.vuint128", "Vale.X64.Decls.validSrcAddrs128", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.index", "Vale.AES.AES_s.key_to_round_keys_LE", "Vale.X64.Decls.va_int_range", "Vale.X64.Decls.va_if", "Vale.Def.Types_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR8", "Prims.l_not", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdi", "Vale.X64.InsBasic.vale_heap", "Vale.X64.Memory.nat64", "Vale.X64.Flags.t", "Vale.X64.Decls.modifies_mem", "Vale.X64.Decls.loc_buffer", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Decls.va_upd_mem" ]
[]
module Vale.AES.X64.AES256 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES256_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansion256Stdcall val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))) [@ va_qattr] let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (()))) val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) = (va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) (va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b) (va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)) //-- //-- AES256EncryptBlock val va_code_AES256EncryptBlock : va_dummy:unit -> Tot va_code val va_codegen_success_AES256EncryptBlock : va_dummy:unit -> Tot va_pbool val va_lemma_AES256EncryptBlock : va_b0:va_code -> va_s0:va_state -> input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES256EncryptBlock ()) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (()))) val va_wpProof_AES256EncryptBlock : input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES256EncryptBlock input key round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ())) = (va_QProc (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES256EncryptBlock input key round_keys keys_buffer) (va_wpProof_AES256EncryptBlock input key round_keys keys_buffer)) //-- //-- AES256EncryptBlockStdcall val va_code_AES256EncryptBlockStdcall : win:bool -> Tot va_code val va_codegen_success_AES256EncryptBlockStdcall : win:bool -> Tot va_pbool val va_lemma_AES256EncryptBlockStdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input:quad32 -> key:(seq nat32) -> input_buffer:buffer128 -> output_buffer:buffer128 -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES256EncryptBlockStdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in aesni_enabled /\ sse_enabled /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\ Vale.X64.Decls.buffer128_read input_buffer 0 (va_get_mem_heaplet 0 va_s0) == input /\ expanded_key_ptr == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) input_ptr input_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) output_ptr output_buffer 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) expanded_key_ptr keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i < 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) i)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (output_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (input_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (expanded_key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 output_buffer) (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.X64.Decls.buffer128_read output_buffer 0 (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR8 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@ va_qattr] let va_wp_AES256EncryptBlockStdcall (win:bool) (input:quad32) (key:(seq nat32)) (input_buffer:buffer128) (output_buffer:buffer128) (keys_buffer:buffer128) (va_s0:va_state)
false
true
Vale.AES.X64.AES256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_AES256EncryptBlockStdcall (win: bool) (input: quad32) (key: (seq nat32)) (input_buffer output_buffer keys_buffer: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AES256.va_wp_AES256EncryptBlockStdcall
{ "file_name": "obj/Vale.AES.X64.AES256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
win: Prims.bool -> input: Vale.X64.Decls.quad32 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> input_buffer: Vale.X64.Memory.buffer128 -> output_buffer: Vale.X64.Memory.buffer128 -> keys_buffer: Vale.X64.Memory.buffer128 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 10, "end_line": 240, "start_col": 2, "start_line": 213 }
Prims.Tot
val va_wp_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (())))
val va_wp_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let key_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let key_expansion_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem: vale_heap) (va_x_rdx: nat64) (va_x_heap1: vale_heap) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\ (let key_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let key_expansion_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let key_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let key_expansion_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j: nat). {:pattern (buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))} j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AES256.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AES256.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.X64.Decls.validSrcAddrs128", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.AES.AES256_helpers.make_AES256_key", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_int_range", "Vale.X64.Decls.va_if", "Vale.Def.Types_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRdx", "Prims.l_not", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdi", "Prims.l_Forall", "Vale.X64.InsBasic.vale_heap", "Vale.X64.Memory.nat64", "Vale.X64.Decls.quad32", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.X64.Decls.modifies_buffer128", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.eq2", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.index", "Vale.AES.AES_s.key_to_round_keys_LE", "Vale.AES.AES_common_s.AES_256", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Decls.va_upd_mem" ]
[]
module Vale.AES.X64.AES256 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES256_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansion256Stdcall val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> input_key_b:buffer128 -> output_key_expansion_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key) j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))) [@ va_qattr] let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
false
true
Vale.AES.X64.AES256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AES256.va_wp_KeyExpansion256Stdcall
{ "file_name": "obj/Vale.AES.X64.AES256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
win: Prims.bool -> input_key_b: Vale.X64.Memory.buffer128 -> output_key_expansion_b: Vale.X64.Memory.buffer128 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 29, "end_line": 103, "start_col": 2, "start_line": 67 }
FStar.Pervasives.Lemma
val pow2_127: n:nat -> Lemma (pow2 127 = 0x80000000000000000000000000000000) [SMTPat (pow2 n)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000)
val pow2_127: n:nat -> Lemma (pow2 127 = 0x80000000000000000000000000000000) [SMTPat (pow2 n)] let pow2_127 _ =
false
null
true
assert_norm (pow2 127 = 0x80000000000000000000000000000000)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_127: n:nat -> Lemma (pow2 127 = 0x80000000000000000000000000000000) [SMTPat (pow2 n)]
[]
Lib.IntTypes.pow2_127
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 127 = 0x80000000000000000000000000000000) [SMTPat (Prims.pow2 n)]
{ "end_col": 76, "end_line": 10, "start_col": 17, "start_line": 10 }
Prims.Tot
val sec_int_v: #t:inttype -> sec_int_t t -> range_t t
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sec_int_v #t u = pub_int_v u
val sec_int_v: #t:inttype -> sec_int_t t -> range_t t let sec_int_v #t u =
false
null
false
pub_int_v u
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.sec_int_t", "Lib.IntTypes.pub_int_v", "Lib.IntTypes.range_t" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sec_int_v: #t:inttype -> sec_int_t t -> range_t t
[]
Lib.IntTypes.sec_int_v
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u40: Lib.IntTypes.sec_int_t t -> Lib.IntTypes.range_t t
{ "end_col": 32, "end_line": 16, "start_col": 21, "start_line": 16 }
FStar.Pervasives.Lemma
val pow2_2: n:nat -> Lemma (pow2 2 = 4) [SMTPat (pow2 n)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_2 _ = assert_norm (pow2 2 = 4)
val pow2_2: n:nat -> Lemma (pow2 2 = 4) [SMTPat (pow2 n)] let pow2_2 _ =
false
null
true
assert_norm (pow2 2 = 4)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_2: n:nat -> Lemma (pow2 2 = 4) [SMTPat (pow2 n)]
[]
Lib.IntTypes.pow2_2
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 2 = 4) [SMTPat (Prims.pow2 n)]
{ "end_col": 41, "end_line": 7, "start_col": 17, "start_line": 7 }
Prims.Tot
val mul_s64_wide: int64 -> int64 -> int128
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_s64_wide a b = Int128.mul_wide a b
val mul_s64_wide: int64 -> int64 -> int128 let mul_s64_wide a b =
false
null
false
Int128.mul_wide a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.int64", "FStar.Int128.mul_wide", "Lib.IntTypes.int128" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = ()
false
true
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_s64_wide: int64 -> int64 -> int128
[]
Lib.IntTypes.mul_s64_wide
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int64 -> b: Lib.IntTypes.int64 -> Lib.IntTypes.int128
{ "end_col": 42, "end_line": 362, "start_col": 23, "start_line": 362 }
FStar.Pervasives.Lemma
val pow2_3: n:nat -> Lemma (pow2 3 = 8) [SMTPat (pow2 n)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_3 _ = assert_norm (pow2 3 = 8)
val pow2_3: n:nat -> Lemma (pow2 3 = 8) [SMTPat (pow2 n)] let pow2_3 _ =
false
null
true
assert_norm (pow2 3 = 8)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_3: n:nat -> Lemma (pow2 3 = 8) [SMTPat (pow2 n)]
[]
Lib.IntTypes.pow2_3
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 3 = 8) [SMTPat (Prims.pow2 n)]
{ "end_col": 41, "end_line": 8, "start_col": 17, "start_line": 8 }
Prims.Tot
val sec_int_t: inttype -> Type0
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sec_int_t t = pub_int_t t
val sec_int_t: inttype -> Type0 let sec_int_t t =
false
null
false
pub_int_t t
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.pub_int_t" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = ()
false
true
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sec_int_t: inttype -> Type0
[]
Lib.IntTypes.sec_int_t
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Lib.IntTypes.inttype -> Type0
{ "end_col": 29, "end_line": 14, "start_col": 18, "start_line": 14 }
FStar.Pervasives.Lemma
val pow2_4: n:nat -> Lemma (pow2 4 = 16) [SMTPat (pow2 n)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_4 _ = assert_norm (pow2 4 = 16)
val pow2_4: n:nat -> Lemma (pow2 4 = 16) [SMTPat (pow2 n)] let pow2_4 _ =
false
null
true
assert_norm (pow2 4 = 16)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_4: n:nat -> Lemma (pow2 4 = 16) [SMTPat (pow2 n)]
[]
Lib.IntTypes.pow2_4
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 4 = 16) [SMTPat (Prims.pow2 n)]
{ "end_col": 42, "end_line": 9, "start_col": 17, "start_line": 9 }
FStar.Pervasives.Lemma
val v_injective: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (mk_int (v #t #l a) == a) [SMTPat (v #t #l a)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let v_injective #t #l a = v_extensionality a (mk_int (v a))
val v_injective: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (mk_int (v #t #l a) == a) [SMTPat (v #t #l a)] let v_injective #t #l a =
false
null
true
v_extensionality a (mk_int (v a))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.v_extensionality", "Lib.IntTypes.mk_int", "Lib.IntTypes.v", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val v_injective: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (mk_int (v #t #l a) == a) [SMTPat (v #t #l a)]
[]
Lib.IntTypes.v_injective
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.mk_int (Lib.IntTypes.v a) == a) [SMTPat (Lib.IntTypes.v a)]
{ "end_col": 35, "end_line": 58, "start_col": 2, "start_line": 58 }
Prims.Tot
val size_to_uint64: s:size_t -> u:uint64{u == u64 (v s)}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_to_uint64 x = Int.Cast.uint32_to_uint64 x
val size_to_uint64: s:size_t -> u:uint64{u == u64 (v s)} let size_to_uint64 x =
false
null
false
Int.Cast.uint32_to_uint64 x
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "FStar.Int.Cast.uint32_to_uint64", "Lib.IntTypes.uint64", "Prims.eq2", "Lib.IntTypes.u64", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_to_uint64: s:size_t -> u:uint64{u == u64 (v s)}
[]
Lib.IntTypes.size_to_uint64
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Lib.IntTypes.size_t -> u93: Lib.IntTypes.uint64{u93 == Lib.IntTypes.u64 (Lib.IntTypes.v s)}
{ "end_col": 50, "end_line": 72, "start_col": 23, "start_line": 72 }
Prims.Tot
val sub_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b
val sub_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l let sub_mod #t #l a b =
false
null
false
match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.rem", "FStar.UInt8.sub_mod", "FStar.UInt8.__uint_to_t", "FStar.UInt16.sub_mod", "FStar.UInt32.sub_mod", "FStar.UInt64.sub_mod", "FStar.UInt128.sub_mod" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[]
Lib.IntTypes.sub_mod
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 31, "end_line": 374, "start_col": 2, "start_line": 368 }
Prims.Tot
val gte_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b
val gte_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC let gte_mask #t a b =
false
null
false
match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.logor", "Lib.IntTypes.lognot", "FStar.UInt8.gte_mask", "FStar.UInt16.gte_mask", "FStar.UInt32.gte_mask", "FStar.UInt64.gte_mask", "FStar.UInt128.gte_mask" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC
[]
Lib.IntTypes.gte_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ "end_col": 32, "end_line": 894, "start_col": 2, "start_line": 888 }
FStar.Pervasives.Lemma
val eq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) [SMTPat (eq_mask #t a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b
val eq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) [SMTPat (eq_mask #t a b)] let eq_mask_lemma #t a b =
false
null
true
if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.signed", "Lib.IntTypes.eq_mask_lemma_signed", "Prims.bool", "Lib.IntTypes.eq_mask_lemma_unsigned", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) [SMTPat (eq_mask #t a b)]
[]
Lib.IntTypes.eq_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.eq_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.eq_mask a b) == 0) <: Type0)) [SMTPat (Lib.IntTypes.eq_mask a b)]
{ "end_col": 33, "end_line": 866, "start_col": 2, "start_line": 865 }
Prims.Tot
val zeros: t:inttype -> l:secrecy_level -> n:int_t t l{v n = 0}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zeros t l = mk_int 0
val zeros: t:inttype -> l:secrecy_level -> n:int_t t l{v n = 0} let zeros t l =
false
null
false
mk_int 0
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.mk_int", "Lib.IntTypes.int_t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zeros: t:inttype -> l:secrecy_level -> n:int_t t l{v n = 0}
[]
Lib.IntTypes.zeros
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Lib.IntTypes.inttype -> l: Lib.IntTypes.secrecy_level -> n: Lib.IntTypes.int_t t l {Lib.IntTypes.v n = 0}
{ "end_col": 24, "end_line": 280, "start_col": 16, "start_line": 280 }
Prims.Tot
val eq: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq #t x y = x = y
val eq: #t:inttype -> int_t t PUB -> int_t t PUB -> bool let eq #t x y =
false
null
false
x = y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_Equality", "Prims.bool" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[]
Lib.IntTypes.eq
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
{ "end_col": 7, "end_line": 1068, "start_col": 2, "start_line": 1068 }
Prims.Tot
val rotate_left: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b))
val rotate_left: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l let rotate_left #t #l a b =
false
null
false
logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.rotval", "Lib.IntTypes.logor", "Lib.IntTypes.shift_left", "Lib.IntTypes.shift_right", "Lib.IntTypes.sub", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.size", "Lib.IntTypes.bits" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b))
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rotate_left: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l
[]
Lib.IntTypes.rotate_left
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l {Lib.IntTypes.unsigned t} -> b: Lib.IntTypes.rotval t -> Lib.IntTypes.int_t t l
{ "end_col": 69, "end_line": 778, "start_col": 2, "start_line": 778 }
Prims.Tot
val gt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt #t x y = match t with | U1 -> UInt8.gt x y | U8 -> UInt8.gt x y | U16 -> UInt16.gt x y | U32 -> UInt32.gt x y | U64 -> UInt64.gt x y | U128 -> UInt128.gt x y | S8 -> Int8.gt x y | S16 -> Int16.gt x y | S32 -> Int32.gt x y | S64 -> Int64.gt x y | S128 -> Int128.gt x y
val gt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool let gt #t x y =
false
null
false
match t with | U1 -> UInt8.gt x y | U8 -> UInt8.gt x y | U16 -> UInt16.gt x y | U32 -> UInt32.gt x y | U64 -> UInt64.gt x y | U128 -> UInt128.gt x y | S8 -> Int8.gt x y | S16 -> Int16.gt x y | S32 -> Int32.gt x y | S64 -> Int64.gt x y | S128 -> Int128.gt x y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.gt", "FStar.UInt16.gt", "FStar.UInt32.gt", "FStar.UInt64.gt", "FStar.UInt128.gt", "FStar.Int8.gt", "FStar.Int16.gt", "FStar.Int32.gt", "FStar.Int64.gt", "FStar.Int128.gt", "Prims.bool" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = () let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y let lt_lemma #t x y = () let lte #t x y = match t with | U1 -> UInt8.lte x y | U8 -> UInt8.lte x y | U16 -> UInt16.lte x y | U32 -> UInt32.lte x y | U64 -> UInt64.lte x y | U128 -> UInt128.lte x y | S8 -> Int8.lte x y | S16 -> Int16.lte x y | S32 -> Int32.lte x y | S64 -> Int64.lte x y | S128 -> Int128.lte x y let lte_lemma #t x y = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[]
Lib.IntTypes.gt
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
{ "end_col": 25, "end_line": 1120, "start_col": 2, "start_line": 1109 }
Prims.Tot
val lognot: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a
val lognot: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l let lognot #t #l a =
false
null
false
match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.rem", "FStar.UInt8.lognot", "FStar.UInt8.__uint_to_t", "FStar.UInt16.lognot", "FStar.UInt32.lognot", "FStar.UInt64.lognot", "FStar.UInt128.lognot", "FStar.Int8.lognot", "FStar.Int16.lognot", "FStar.Int32.lognot", "FStar.Int64.lognot", "FStar.Int128.lognot" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l
[]
Lib.IntTypes.lognot
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 27, "end_line": 651, "start_col": 2, "start_line": 640 }
Prims.Tot
val incr: #t:inttype -> #l:secrecy_level -> a:int_t t l{v a < maxint t} -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1)
val incr: #t:inttype -> #l:secrecy_level -> a:int_t t l{v a < maxint t} -> int_t t l let incr #t #l a =
false
null
false
match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.maxint", "FStar.UInt8.add", "FStar.UInt8.__uint_to_t", "FStar.UInt16.add", "FStar.UInt16.__uint_to_t", "FStar.UInt32.add", "FStar.UInt32.__uint_to_t", "FStar.UInt64.add", "FStar.UInt64.__uint_to_t", "FStar.UInt128.add", "FStar.UInt128.uint_to_t", "FStar.Int8.add", "FStar.Int8.__int_to_t", "FStar.Int16.add", "FStar.Int16.__int_to_t", "FStar.Int32.add", "FStar.Int32.__int_to_t", "FStar.Int64.add", "FStar.Int64.__int_to_t", "FStar.Int128.add", "FStar.Int128.int_to_t" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val incr: #t:inttype -> #l:secrecy_level -> a:int_t t l{v a < maxint t} -> int_t t l
[]
Lib.IntTypes.incr
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l {Lib.IntTypes.v a < Lib.IntTypes.maxint t} -> Lib.IntTypes.int_t t l
{ "end_col": 44, "end_line": 326, "start_col": 2, "start_line": 315 }
Prims.Tot
val gte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte #t x y = match t with | U1 -> UInt8.gte x y | U8 -> UInt8.gte x y | U16 -> UInt16.gte x y | U32 -> UInt32.gte x y | U64 -> UInt64.gte x y | U128 -> UInt128.gte x y | S8 -> Int8.gte x y | S16 -> Int16.gte x y | S32 -> Int32.gte x y | S64 -> Int64.gte x y | S128 -> Int128.gte x y
val gte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool let gte #t x y =
false
null
false
match t with | U1 -> UInt8.gte x y | U8 -> UInt8.gte x y | U16 -> UInt16.gte x y | U32 -> UInt32.gte x y | U64 -> UInt64.gte x y | U128 -> UInt128.gte x y | S8 -> Int8.gte x y | S16 -> Int16.gte x y | S32 -> Int32.gte x y | S64 -> Int64.gte x y | S128 -> Int128.gte x y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.gte", "FStar.UInt16.gte", "FStar.UInt32.gte", "FStar.UInt64.gte", "FStar.UInt128.gte", "FStar.Int8.gte", "FStar.Int16.gte", "FStar.Int32.gte", "FStar.Int64.gte", "FStar.Int128.gte", "Prims.bool" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = () let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y let lt_lemma #t x y = () let lte #t x y = match t with | U1 -> UInt8.lte x y | U8 -> UInt8.lte x y | U16 -> UInt16.lte x y | U32 -> UInt32.lte x y | U64 -> UInt64.lte x y | U128 -> UInt128.lte x y | S8 -> Int8.lte x y | S16 -> Int16.lte x y | S32 -> Int32.lte x y | S64 -> Int64.lte x y | S128 -> Int128.lte x y let lte_lemma #t x y = () let gt #t x y = match t with | U1 -> UInt8.gt x y | U8 -> UInt8.gt x y | U16 -> UInt16.gt x y | U32 -> UInt32.gt x y | U64 -> UInt64.gt x y | U128 -> UInt128.gt x y | S8 -> Int8.gt x y | S16 -> Int16.gt x y | S32 -> Int32.gt x y | S64 -> Int64.gt x y | S128 -> Int128.gt x y let gt_lemma #t x y = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[]
Lib.IntTypes.gte
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
{ "end_col": 26, "end_line": 1136, "start_col": 2, "start_line": 1125 }
Prims.Tot
val logand: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b
val logand: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l let logand #t #l a b =
false
null
false
match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.logand", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.UInt8.t", "FStar.UInt8.__uint_to_t", "FStar.UInt16.logand", "FStar.UInt32.logand", "FStar.UInt64.logand", "FStar.UInt128.logand", "FStar.Int8.logand", "FStar.Int16.logand", "FStar.Int32.logand", "FStar.Int64.logand", "FStar.Int128.logand" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[]
Lib.IntTypes.logand
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 29, "end_line": 509, "start_col": 2, "start_line": 493 }
FStar.Pervasives.Lemma
val lognot_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (lognot a) == lognot_v (v a))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> ()
val lognot_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (lognot a) == lognot_v (v a)) let lognot_spec #t #l a =
false
null
true
match t with | U1 -> assert_norm (lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm (lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> ()
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Prims.int", "Lib.IntTypes.lognot_v", "Lib.IntTypes.U1", "Prims.unit", "Lib.IntTypes.SEC", "Lib.IntTypes.lognot", "Lib.IntTypes.u1" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t))
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (lognot a) == lognot_v (v a))
[]
Lib.IntTypes.lognot_spec
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.lognot a) == Lib.IntTypes.lognot_v (Lib.IntTypes.v a))
{ "end_col": 11, "end_line": 668, "start_col": 2, "start_line": 664 }
Prims.Tot
val mul: #t:inttype{~(U128? t) /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a * v b) t} -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b
val mul: #t:inttype{~(U128? t) /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a * v b) t} -> int_t t l let mul #t #l a b =
false
null
false
match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.range", "FStar.Mul.op_Star", "Lib.IntTypes.v", "FStar.UInt8.mul", "FStar.UInt16.mul", "FStar.UInt32.mul", "FStar.UInt64.mul", "FStar.Int8.mul", "FStar.Int16.mul", "FStar.Int32.mul", "FStar.Int64.mul" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul: #t:inttype{~(U128? t) /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a * v b) t} -> int_t t l
[]
Lib.IntTypes.mul
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l {Lib.IntTypes.range (Lib.IntTypes.v a * Lib.IntTypes.v b) t} -> Lib.IntTypes.int_t t l
{ "end_col": 24, "end_line": 354, "start_col": 2, "start_line": 345 }
FStar.Pervasives.Lemma
val logand_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logand` b) == v a `logand_v` v b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> ()
val logand_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logand` b) == v a `logand_v` v b) let logand_spec #t #l a b =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logand` (u1 0) == u1 0 /\ (u1 0) `logand` (u1 1) == u1 0); assert_norm ((u1 1) `logand` (u1 0) == u1 0 /\ (u1 1) `logand` (u1 1) == u1 1); assert_norm (logand_v #U1 0 0 == 0 /\ logand_v #U1 0 1 == 0); assert_norm (logand_v #U1 1 0 == 0 /\ logand_v #U1 1 1 == 1) | _ -> ()
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Prims.int", "Lib.IntTypes.logand_v", "Lib.IntTypes.U1", "Prims.unit", "Lib.IntTypes.SEC", "Lib.IntTypes.logand", "Lib.IntTypes.u1" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logand` b) == v a `logand_v` v b)
[]
Lib.IntTypes.logand_spec
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logand a b) == Lib.IntTypes.logand_v (Lib.IntTypes.v a) (Lib.IntTypes.v b))
{ "end_col": 11, "end_line": 540, "start_col": 2, "start_line": 534 }
FStar.Pervasives.Lemma
val logor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logor` b) == v a `logor_v` v b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> ()
val logor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logor` b) == v a `logor_v` v b) let logor_spec #t #l a b =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logor` (ones U1 l) == u1 1 /\ (u1 1) `logor` (ones U1 l) == u1 1); assert_norm ((u1 0) `logor` (zeros U1 l) == u1 0 /\ (u1 1) `logor` (zeros U1 l) == u1 1); assert_norm (logor_v #U1 0 0 == 0 /\ logor_v #U1 0 1 == 1); assert_norm (logor_v #U1 1 0 == 1 /\ logor_v #U1 1 1 == 1) | _ -> ()
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Prims.int", "Lib.IntTypes.logor_v", "Lib.IntTypes.U1", "Prims.unit", "Lib.IntTypes.SEC", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Lib.IntTypes.zeros", "Lib.IntTypes.ones" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a))
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logor` b) == v a `logor_v` v b)
[]
Lib.IntTypes.logor_spec
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logor a b) == Lib.IntTypes.logor_v (Lib.IntTypes.v a) (Lib.IntTypes.v b))
{ "end_col": 11, "end_line": 635, "start_col": 2, "start_line": 629 }
FStar.Pervasives.Lemma
val lt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a < v b then v (lt_mask a b) == ones_v t else v (lt_mask a b) == 0) [SMTPat (lt_mask #t a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
val lt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a < v b then v (lt_mask a b) == ones_v t else v (lt_mask a b) == 0) [SMTPat (lt_mask #t a b)] let lt_mask_lemma #t a b =
false
null
true
assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.UInt.lognot_self", "Lib.IntTypes.bits", "Prims.unit", "FStar.UInt.lognot_lemma_1", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.lognot", "Lib.IntTypes.u1" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a < v b then v (lt_mask a b) == ones_v t else v (lt_mask a b) == 0) [SMTPat (lt_mask #t a b)]
[]
Lib.IntTypes.lt_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a < Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.lt_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.lt_mask a b) == 0) <: Type0)) [SMTPat (Lib.IntTypes.lt_mask a b)]
{ "end_col": 30, "end_line": 923, "start_col": 2, "start_line": 921 }
FStar.Pervasives.Lemma
val gte_mask_logand_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a >= v b then v (c `logand` gte_mask a b) == v c else v (c `logand` gte_mask a b) == 0) [SMTPat (c `logand` gte_mask a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c)
val gte_mask_logand_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a >= v b then v (c `logand` gte_mask a b) == v c else v (c `logand` gte_mask a b) == 0) [SMTPat (c `logand` gte_mask a b)] let gte_mask_logand_lemma #t a b c =
false
null
true
logand_zeros c; logand_ones c; match t with | U1 -> assert_norm (logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Lib.IntTypes.lognot", "FStar.UInt.logand_commutative", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Lib.IntTypes.gte_mask", "Prims.unit", "Lib.IntTypes.logand_ones", "Lib.IntTypes.logand_zeros" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_mask_logand_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a >= v b then v (c `logand` gte_mask a b) == v c else v (c `logand` gte_mask a b) == 0) [SMTPat (c `logand` gte_mask a b)]
[]
Lib.IntTypes.gte_mask_logand_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> c: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a >= Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.logand c (Lib.IntTypes.gte_mask a b)) == Lib.IntTypes.v c | _ -> Lib.IntTypes.v (Lib.IntTypes.logand c (Lib.IntTypes.gte_mask a b)) == 0) <: Type0)) [SMTPat (Lib.IntTypes.logand c (Lib.IntTypes.gte_mask a b))]
{ "end_col": 67, "end_line": 916, "start_col": 2, "start_line": 908 }
FStar.Pervasives.Lemma
val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end
val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a =
false
null
true
if a >= 0 then (Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1) else (Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n - 1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n - 1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n - 1); assert (sar + pow2 n = pow2 (n - 1) + (au / 2)); pow2_double_sum (n - 1); assert (sar + pow2 (n - 1) = (a + pow2 n) / 2); pow2_double_mult (n - 1); lemma_div_plus a (pow2 (n - 1)) 2; assert (sar = a / 2))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "Prims.op_GreaterThanOrEqual", "FStar.UInt.shift_right_value_aux_3", "Prims.unit", "FStar.Int.sign_bit_positive", "Prims.bool", "Prims._assert", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "FStar.Math.Lemmas.lemma_div_plus", "Prims.pow2", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_double_mult", "Prims.op_Addition", "FStar.Math.Lemmas.pow2_double_sum", "FStar.UInt.slice_left_lemma", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.UInt.append_lemma", "FStar.BitVector.ones_vec", "FStar.Seq.Base.append", "FStar.BitVector.bv_t", "FStar.UInt.to_vec", "FStar.UInt.uint_t", "FStar.UInt.shift_right", "FStar.Int.to_vec", "FStar.Int.shift_arithmetic_right", "FStar.Int.to_uint", "FStar.Int.sign_bit_negative" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2)
[]
Lib.IntTypes.shift_right_value_aux_2
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.shift_arithmetic_right a 1 = a / 2)
{ "end_col": 5, "end_line": 722, "start_col": 2, "start_line": 697 }
Prims.Tot
val secret: #t:inttype -> x:int_t t PUB -> y:int_t t SEC{v x == v y}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secret #t x = x
val secret: #t:inttype -> x:int_t t PUB -> y:int_t t SEC{v x == v y} let secret #t x =
false
null
false
x
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Lib.IntTypes.SEC", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secret: #t:inttype -> x:int_t t PUB -> y:int_t t SEC{v x == v y}
[]
Lib.IntTypes.secret
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.SEC {Lib.IntTypes.v x == Lib.IntTypes.v y}
{ "end_col": 19, "end_line": 18, "start_col": 18, "start_line": 18 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let byte_to_int8 x = Int.Cast.uint8_to_int8 x
let byte_to_int8 x =
false
null
false
Int.Cast.uint8_to_int8 x
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "FStar.UInt8.t", "FStar.Int.Cast.uint8_to_int8", "FStar.Int8.t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Int8.v", "FStar.Int.Cast.op_At_Percent", "FStar.UInt8.v", "Prims.pow2" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val byte_to_int8 : x: FStar.UInt8.t -> b: FStar.Int8.t{FStar.Int8.v b = FStar.UInt8.v x @% Prims.pow2 8}
[]
Lib.IntTypes.byte_to_int8
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.UInt8.t -> b: FStar.Int8.t{FStar.Int8.v b = FStar.UInt8.v x @% Prims.pow2 8}
{ "end_col": 45, "end_line": 76, "start_col": 21, "start_line": 76 }
FStar.Pervasives.Lemma
val logor_ones: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` ones t l) == ones_v t)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t))
val logor_ones: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` ones t l) == ones_v t) let logor_ones #t #l a =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logor` (ones U1 l) == u1 1 /\ (u1 1) `logor` (ones U1 l) == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Lib.IntTypes.ones", "FStar.UInt.logor_lemma_2", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.nth_lemma", "FStar.Int.logor", "FStar.Int.ones", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor_ones: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` ones t l) == ones_v t)
[]
Lib.IntTypes.logor_ones
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logor a (Lib.IntTypes.ones t l)) == Lib.IntTypes.ones_v t)
{ "end_col": 116, "end_line": 616, "start_col": 2, "start_line": 613 }
FStar.Pervasives.Lemma
val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> ()
val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b =
false
null
true
match t with | U1 -> assert_norm (logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> ()
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.logxor", "Lib.IntTypes.u1", "Lib.IntTypes.lognot", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0)
[]
Lib.IntTypes.eq_mask_lemma_unsigned
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.eq_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.eq_mask a b) == 0) <: Type0))
{ "end_col": 37, "end_line": 814, "start_col": 2, "start_line": 808 }
FStar.Pervasives.Lemma
val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end
val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s =
false
null
true
if s = 1 then shift_right_value_aux_2 #n a else let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s - 1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s - 1)) 1); shift_right_value_aux_3 #n a (s - 1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s - 1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s - 1)) / 2); pow2_double_mult (s - 1); division_multiplication_lemma a (pow2 (s - 1)) 2
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma", "" ]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.shift_right_value_aux_2", "Prims.bool", "FStar.Math.Lemmas.division_multiplication_lemma", "Prims.pow2", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_double_mult", "Prims._assert", "FStar.Int.shift_arithmetic_right", "Prims.op_Division", "Lib.IntTypes.shift_right_value_aux_3", "FStar.Seq.Base.equal", "FStar.BitVector.shift_arithmetic_right_vec", "FStar.BitVector.bv_t", "FStar.Int.to_vec" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s)
[ "recursion" ]
Lib.IntTypes.shift_right_value_aux_3
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: FStar.Int.int_t n -> s: Prims.pos{s < n} -> FStar.Pervasives.Lemma (ensures FStar.Int.shift_arithmetic_right a s = a / Prims.pow2 s) (decreases s)
{ "end_col": 7, "end_line": 743, "start_col": 2, "start_line": 728 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_At_Percent = Int.op_At_Percent
let op_At_Percent =
false
null
false
Int.op_At_Percent
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "FStar.Int.op_At_Percent" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_At_Percent : v: Prims.int -> p: Prims.int{p > 0 /\ p % 2 = 0} -> Prims.int
[]
Lib.IntTypes.op_At_Percent
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Prims.int -> p: Prims.int{p > 0 /\ p % 2 = 0} -> Prims.int
{ "end_col": 37, "end_line": 78, "start_col": 20, "start_line": 78 }
FStar.Pervasives.Lemma
val logand_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = 0 then v (a `logand` b) == 0 else v (a `logand` b) == v b))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b)
val logand_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = 0 then v (a `logand` b) == 0 else v (a `logand` b) == v b)) let logand_lemma #t #l a b =
false
null
true
logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm ((u1 0) `logand` (zeros U1 l) == u1 0 /\ (u1 1) `logand` (zeros U1 l) == u1 0); assert_norm ((u1 0) `logand` (ones U1 l) == u1 0 /\ (u1 1) `logand` (ones U1 l) == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.logand", "Lib.IntTypes.u1", "Lib.IntTypes.ones", "Prims.unit", "Lib.IntTypes.zeros", "FStar.UInt.logand_commutative", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.logand_commutative", "Lib.IntTypes.logand_ones", "Lib.IntTypes.logand_zeros" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = 0 then v (a `logand` b) == 0 else v (a `logand` b) == v b))
[]
Lib.IntTypes.logand_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a = 0 \/ Lib.IntTypes.v a = Lib.IntTypes.ones_v t) (ensures ((match Lib.IntTypes.v a = 0 with | true -> Lib.IntTypes.v (Lib.IntTypes.logand a b) == 0 | _ -> Lib.IntTypes.v (Lib.IntTypes.logand a b) == Lib.IntTypes.v b) <: Type0))
{ "end_col": 79, "end_line": 531, "start_col": 2, "start_line": 524 }
FStar.Pervasives.Lemma
val lognot_lemma: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (lognot a) == 0 else v (lognot a) == ones_v t))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t))
val lognot_lemma: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (lognot a) == 0 else v (lognot a) == ones_v t)) let lognot_lemma #t #l a =
false
null
true
match t with | U1 -> assert_norm (lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.lognot", "Lib.IntTypes.u1", "FStar.UInt.nth_lemma", "Lib.IntTypes.bits", "FStar.UInt.lognot", "FStar.UInt.ones", "FStar.UInt.zero", "Prims.unit", "FStar.UInt.lognot_lemma_1", "FStar.Int.nth_lemma", "FStar.Int.lognot", "FStar.Int.ones", "FStar.Int.zero" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot_lemma: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (lognot a) == 0 else v (lognot a) == ones_v t))
[]
Lib.IntTypes.lognot_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a = 0 \/ Lib.IntTypes.v a = Lib.IntTypes.ones_v t) (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.ones_v t with | true -> Lib.IntTypes.v (Lib.IntTypes.lognot a) == 0 | _ -> Lib.IntTypes.v (Lib.IntTypes.lognot a) == Lib.IntTypes.ones_v t) <: Type0))
{ "end_col": 86, "end_line": 661, "start_col": 2, "start_line": 654 }
Prims.Tot
val mul64_wide: uint64 -> uint64 -> uint128
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul64_wide a b = UInt128.mul_wide a b
val mul64_wide: uint64 -> uint64 -> uint128 let mul64_wide a b =
false
null
false
UInt128.mul_wide a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.uint64", "FStar.UInt128.mul_wide", "Lib.IntTypes.uint128" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = ()
false
true
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul64_wide: uint64 -> uint64 -> uint128
[]
Lib.IntTypes.mul64_wide
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.uint64 -> b: Lib.IntTypes.uint64 -> Lib.IntTypes.uint128
{ "end_col": 41, "end_line": 358, "start_col": 21, "start_line": 358 }
FStar.Pervasives.Lemma
val logor_disjoint: #t:inttype{unsigned t} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> m:nat{m < bits t} -> Lemma (requires 0 <= v a /\ v a < pow2 m /\ v b % pow2 m == 0) (ensures v (a `logor` b) == v a + v b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end
val logor_disjoint: #t:inttype{unsigned t} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> m:nat{m < bits t} -> Lemma (requires 0 <= v a /\ v a < pow2 m /\ v b % pow2 m == 0) (ensures v (a `logor` b) == v a + v b) let logor_disjoint #t #l a b m =
false
null
true
if m > 0 then (UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a)) else (UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Prims.nat", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims.op_GreaterThan", "FStar.UInt.logor_commutative", "Lib.IntTypes.v", "Prims.unit", "FStar.UInt.logor_disjoint", "Prims.bool", "FStar.UInt.logor_lemma_1" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1"
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor_disjoint: #t:inttype{unsigned t} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> m:nat{m < bits t} -> Lemma (requires 0 <= v a /\ v a < pow2 m /\ v b % pow2 m == 0) (ensures v (a `logor` b) == v a + v b)
[]
Lib.IntTypes.logor_disjoint
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> m: Prims.nat{m < Lib.IntTypes.bits t} -> FStar.Pervasives.Lemma (requires 0 <= Lib.IntTypes.v a /\ Lib.IntTypes.v a < Prims.pow2 m /\ Lib.IntTypes.v b % Prims.pow2 m == 0) (ensures Lib.IntTypes.v (Lib.IntTypes.logor a b) == Lib.IntTypes.v a + Lib.IntTypes.v b)
{ "end_col": 5, "end_line": 601, "start_col": 2, "start_line": 592 }
Prims.Tot
val mk_int: #t:inttype -> #l:secrecy_level -> n:range_t t -> u:int_t t l{v u == n}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x
val mk_int: #t:inttype -> #l:secrecy_level -> n:range_t t -> u:int_t t l{v u == n} let mk_int #t #l x =
false
null
false
match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.range_t", "FStar.UInt8.uint_to_t", "FStar.UInt16.uint_to_t", "FStar.UInt32.uint_to_t", "FStar.UInt64.uint_to_t", "FStar.UInt128.uint_to_t", "FStar.Int8.int_to_t", "FStar.Int16.int_to_t", "FStar.Int32.int_to_t", "FStar.Int64.int_to_t", "FStar.Int128.int_to_t", "Lib.IntTypes.int_t", "Prims.eq2", "Lib.IntTypes.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_int: #t:inttype -> #l:secrecy_level -> n:range_t t -> u:int_t t l{v u == n}
[]
Lib.IntTypes.mk_int
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Lib.IntTypes.range_t t -> u62: Lib.IntTypes.int_t t l {Lib.IntTypes.v u62 == n}
{ "end_col": 29, "end_line": 33, "start_col": 2, "start_line": 22 }
FStar.Pervasives.Lemma
val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b
val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b =
false
null
true
match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.v_inj", "FStar.UInt16.v_inj", "FStar.UInt32.v_inj", "FStar.UInt64.v_inj", "FStar.UInt128.v_inj", "FStar.Int8.v_inj", "FStar.Int16.v_inj", "FStar.Int32.v_inj", "FStar.Int64.v_inj", "FStar.Int128.v_inj", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b)
[]
Lib.IntTypes.v_extensionality
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a == Lib.IntTypes.v b) (ensures a == b)
{ "end_col": 28, "end_line": 55, "start_col": 2, "start_line": 44 }
FStar.Pervasives.Lemma
val logand_mask: #t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> m:pos{m < bits t} -> Lemma (requires v b == pow2 m - 1) (ensures v (logand #t #l a b) == v a % pow2 m)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m
val logand_mask: #t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> m:pos{m < bits t} -> Lemma (requires v b == pow2 m - 1) (ensures v (logand #t #l a b) == v a % pow2 m) let logand_mask #t #l a b m =
false
null
true
match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.uint_t", "Prims.pos", "Prims.op_LessThan", "Lib.IntTypes.bits", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.UInt8.t", "FStar.UInt8.logand", "FStar.UInt8.__uint_to_t", "Prims.unit", "FStar.UInt.logand_mask", "FStar.UInt.to_uint_t", "Lib.IntTypes.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b))
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_mask: #t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> m:pos{m < bits t} -> Lemma (requires v b == pow2 m - 1) (ensures v (logand #t #l a b) == v a % pow2 m)
[]
Lib.IntTypes.logand_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.uint_t t l -> b: Lib.IntTypes.uint_t t l -> m: Prims.pos{m < Lib.IntTypes.bits t} -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v b == Prims.pow2 m - 1) (ensures Lib.IntTypes.v (Lib.IntTypes.logand a b) == Lib.IntTypes.v a % Prims.pow2 m)
{ "end_col": 57, "end_line": 566, "start_col": 2, "start_line": 556 }
Prims.Tot
val u128: n:range_t U64 -> u:uint128{v #U128 u == n}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n)
val u128: n:range_t U64 -> u:uint128{v #U128 u == n} let u128 n =
false
null
false
FStar.UInt128.uint64_to_uint128 (u64 n)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.range_t", "Lib.IntTypes.U64", "FStar.UInt128.uint64_to_uint128", "Lib.IntTypes.u64", "Lib.IntTypes.uint128", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U128", "Lib.IntTypes.v", "Lib.IntTypes.SEC" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u128: n:range_t U64 -> u:uint128{v #U128 u == n}
[]
Lib.IntTypes.u128
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Lib.IntTypes.range_t Lib.IntTypes.U64 -> u86: Lib.IntTypes.uint128{Lib.IntTypes.v u86 == n}
{ "end_col": 52, "end_line": 62, "start_col": 13, "start_line": 62 }
Prims.Tot
val neq_mask: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let neq_mask #t a b = lognot (eq_mask #t a b)
val neq_mask: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC let neq_mask #t a b =
false
null
false
lognot (eq_mask #t a b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.lognot", "Lib.IntTypes.eq_mask" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val neq_mask: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC
[]
Lib.IntTypes.neq_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ "end_col": 45, "end_line": 877, "start_col": 22, "start_line": 877 }
FStar.Pervasives.Lemma
val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a
val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s =
false
null
true
pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThanOrEqual", "FStar.Int.sign_bit_positive", "Prims.bool", "FStar.Int.sign_bit_negative", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s)
[]
Lib.IntTypes.shift_right_value_aux_1
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: FStar.Int.int_t n -> s: Prims.nat{n <= s} -> FStar.Pervasives.Lemma (ensures FStar.Int.shift_arithmetic_right a s = a / Prims.pow2 s)
{ "end_col": 69, "end_line": 690, "start_col": 2, "start_line": 689 }
Prims.Tot
val lt_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt_mask #t a b = lognot (gte_mask a b)
val lt_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC let lt_mask #t a b =
false
null
false
lognot (gte_mask a b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.lognot", "Lib.IntTypes.gte_mask" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC
[]
Lib.IntTypes.lt_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ "end_col": 42, "end_line": 918, "start_col": 21, "start_line": 918 }
Prims.Tot
val size_to_uint32: s:size_t -> u:uint32{u == u32 (v s)}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_to_uint32 x = x
val size_to_uint32: s:size_t -> u:uint32{u == u32 (v s)} let size_to_uint32 x =
false
null
false
x
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Lib.IntTypes.uint32", "Prims.eq2", "Lib.IntTypes.u32", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_to_uint32: s:size_t -> u:uint32{u == u32 (v s)}
[]
Lib.IntTypes.size_to_uint32
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Lib.IntTypes.size_t -> u92: Lib.IntTypes.uint32{u92 == Lib.IntTypes.u32 (Lib.IntTypes.v s)}
{ "end_col": 24, "end_line": 70, "start_col": 23, "start_line": 70 }
Prims.Tot
val i128 (n:range_t S64) : u:int128{v #S128 u == n}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n
val i128 (n:range_t S64) : u:int128{v #S128 u == n} let i128 n =
false
null
false
assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.range_t", "Lib.IntTypes.S64", "Lib.IntTypes.sint", "Lib.IntTypes.S128", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Lib.IntTypes.int128", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val i128 (n:range_t S64) : u:int128{v #S128 u == n}
[]
Lib.IntTypes.i128
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Lib.IntTypes.range_t Lib.IntTypes.S64 -> u87: Lib.IntTypes.int128{Lib.IntTypes.v u87 == n}
{ "end_col": 19, "end_line": 68, "start_col": 2, "start_line": 67 }
Prims.Tot
val byte_to_uint8: s:byte_t -> u:uint8{u == u8 (v s)}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let byte_to_uint8 x = x
val byte_to_uint8: s:byte_t -> u:uint8{u == u8 (v s)} let byte_to_uint8 x =
false
null
false
x
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.byte_t", "Lib.IntTypes.uint8", "Prims.eq2", "Lib.IntTypes.u8", "Lib.IntTypes.v", "Lib.IntTypes.U8", "Lib.IntTypes.PUB" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val byte_to_uint8: s:byte_t -> u:uint8{u == u8 (v s)}
[]
Lib.IntTypes.byte_to_uint8
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Lib.IntTypes.byte_t -> u94: Lib.IntTypes.uint8{u94 == Lib.IntTypes.u8 (Lib.IntTypes.v s)}
{ "end_col": 23, "end_line": 74, "start_col": 22, "start_line": 74 }
Prims.Tot
val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a)
val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a =
false
null
false
int128_to_uint128 (int64_to_int128 a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "FStar.Int64.t", "Lib.IntTypes.int128_to_uint128", "Lib.IntTypes.int64_to_int128", "FStar.UInt128.t", "Prims.eq2", "Prims.int", "FStar.UInt128.v", "Prims.op_Modulus", "FStar.Int64.v", "Prims.pow2" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128}
[]
Lib.IntTypes.int64_to_uint128
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: FStar.Int64.t -> b: FStar.UInt128.t{FStar.UInt128.v b == FStar.Int64.v a % Prims.pow2 128}
{ "end_col": 62, "end_line": 108, "start_col": 25, "start_line": 108 }
Prims.Tot
val add_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b
val add_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l let add_mod #t #l a b =
false
null
false
match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.rem", "FStar.UInt8.add_mod", "FStar.UInt8.__uint_to_t", "FStar.UInt16.add_mod", "FStar.UInt32.add_mod", "FStar.UInt64.add_mod", "FStar.UInt128.add_mod" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[]
Lib.IntTypes.add_mod
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 31, "end_line": 290, "start_col": 2, "start_line": 284 }
Prims.Tot
val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a)
val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a =
false
null
false
uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "FStar.UInt64.t", "Lib.IntTypes.uint128_to_int128", "FStar.Int.Cast.Full.uint64_to_uint128", "FStar.Int128.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.Int.size", "FStar.Int128.n", "FStar.UInt.size", "FStar.UInt64.n", "FStar.Int128.v", "FStar.UInt64.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a}
[]
Lib.IntTypes.uint64_to_int128
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: FStar.UInt64.t -> b: FStar.Int128.t{FStar.Int128.v b == FStar.UInt64.v a}
{ "end_col": 78, "end_line": 105, "start_col": 25, "start_line": 105 }
Prims.Tot
val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a)
val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a =
false
null
false
Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "FStar.Int128.t", "FStar.Int.Cast.Full.uint128_to_uint64", "Lib.IntTypes.int128_to_uint128", "FStar.UInt64.t", "Prims.eq2", "Prims.int", "FStar.UInt64.v", "Prims.op_Modulus", "FStar.Int128.v", "Prims.pow2" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64}
[]
Lib.IntTypes.int128_to_uint64
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: FStar.Int128.t -> b: FStar.UInt64.t{FStar.UInt64.v b == FStar.Int128.v a % Prims.pow2 64}
{ "end_col": 78, "end_line": 111, "start_col": 25, "start_line": 111 }
Prims.Tot
val decr: #t:inttype -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1)
val decr: #t:inttype -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> int_t t l let decr #t #l a =
false
null
false
match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.minint", "Lib.IntTypes.v", "FStar.UInt8.sub", "FStar.UInt8.__uint_to_t", "FStar.UInt16.sub", "FStar.UInt16.__uint_to_t", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt64.sub", "FStar.UInt64.__uint_to_t", "FStar.UInt128.sub", "FStar.UInt128.uint_to_t", "FStar.Int8.sub", "FStar.Int8.__int_to_t", "FStar.Int16.sub", "FStar.Int16.__int_to_t", "FStar.Int32.sub", "FStar.Int32.__int_to_t", "FStar.Int64.sub", "FStar.Int64.__int_to_t", "FStar.Int128.sub", "FStar.Int128.int_to_t" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decr: #t:inttype -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> int_t t l
[]
Lib.IntTypes.decr
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l {Lib.IntTypes.minint t < Lib.IntTypes.v a} -> Lib.IntTypes.int_t t l
{ "end_col": 44, "end_line": 410, "start_col": 2, "start_line": 399 }
Prims.Tot
val add: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a + v b) t} -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b
val add: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a + v b) t} -> int_t t l let add #t #l a b =
false
null
false
match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.range", "Prims.op_Addition", "Lib.IntTypes.v", "FStar.UInt8.add", "FStar.UInt16.add", "FStar.UInt32.add", "FStar.UInt64.add", "FStar.UInt128.add", "FStar.Int8.add", "FStar.Int16.add", "FStar.Int32.add", "FStar.Int64.add", "FStar.Int128.add" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a + v b) t} -> int_t t l
[]
Lib.IntTypes.add
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l {Lib.IntTypes.range (Lib.IntTypes.v a + Lib.IntTypes.v b) t} -> Lib.IntTypes.int_t t l
{ "end_col": 26, "end_line": 307, "start_col": 2, "start_line": 296 }
Prims.Tot
val mul_mod: #t:inttype{unsigned t /\ ~(U128? t)} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b
val mul_mod: #t:inttype{unsigned t /\ ~(U128? t)} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l let mul_mod #t #l a b =
false
null
false
match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.b2t", "Lib.IntTypes.unsigned", "Prims.l_not", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.mul_mod", "FStar.UInt16.mul_mod", "FStar.UInt32.mul_mod", "FStar.UInt64.mul_mod" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_mod: #t:inttype{unsigned t /\ ~(U128? t)} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[]
Lib.IntTypes.mul_mod
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 29, "end_line": 339, "start_col": 2, "start_line": 334 }
Prims.Tot
val ones: t:inttype -> l:secrecy_level -> n:int_t t l{v n = ones_v t}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1)
val ones: t:inttype -> l:secrecy_level -> n:int_t t l{v n = ones_v t} let ones t l =
false
null
false
match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (- 1)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "FStar.UInt8.__uint_to_t", "FStar.UInt16.__uint_to_t", "FStar.UInt32.__uint_to_t", "FStar.UInt64.__uint_to_t", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.UInt128.v", "Prims.op_Subtraction", "Prims.pow2", "FStar.UInt128.t", "FStar.UInt128.add", "FStar.UInt128.shift_left", "Prims.l_or", "FStar.UInt.size", "FStar.UInt128.n", "FStar.UInt64.v", "FStar.UInt64.uint_to_t", "FStar.UInt64.t", "FStar.UInt128.uint64_to_uint128", "Lib.IntTypes.mk_int", "Prims.op_Minus", "Lib.IntTypes.int_t", "Prims.b2t", "Prims.op_Equality", "Lib.IntTypes.v", "Lib.IntTypes.ones_v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ones: t:inttype -> l:secrecy_level -> n:int_t t l{v n = ones_v t}
[]
Lib.IntTypes.ones
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Lib.IntTypes.inttype -> l: Lib.IntTypes.secrecy_level -> n: Lib.IntTypes.int_t t l {Lib.IntTypes.v n = Lib.IntTypes.ones_v t}
{ "end_col": 20, "end_line": 278, "start_col": 2, "start_line": 267 }
Prims.Tot
val sub: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a - v b) t} -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b
val sub: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a - v b) t} -> int_t t l let sub #t #l a b =
false
null
false
match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.range", "Prims.op_Subtraction", "Lib.IntTypes.v", "FStar.UInt8.sub", "FStar.UInt16.sub", "FStar.UInt32.sub", "FStar.UInt64.sub", "FStar.UInt128.sub", "FStar.Int8.sub", "FStar.Int16.sub", "FStar.Int32.sub", "FStar.Int64.sub", "FStar.Int128.sub" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a - v b) t} -> int_t t l
[]
Lib.IntTypes.sub
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l {Lib.IntTypes.range (Lib.IntTypes.v a - Lib.IntTypes.v b) t} -> Lib.IntTypes.int_t t l
{ "end_col": 26, "end_line": 391, "start_col": 2, "start_line": 380 }
FStar.Pervasives.Lemma
val logand_zeros: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` zeros t l) == 0)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a)
val logand_zeros: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` zeros t l) == 0) let logand_zeros #t #l a =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logand` (zeros U1 l) == u1 0 /\ (u1 1) `logand` (zeros U1 l) == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.logand", "Lib.IntTypes.u1", "Lib.IntTypes.zeros", "FStar.UInt.logand_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.logand_lemma_1", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_zeros: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` zeros t l) == 0)
[]
Lib.IntTypes.logand_zeros
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logand a (Lib.IntTypes.zeros t l)) == 0)
{ "end_col": 69, "end_line": 515, "start_col": 2, "start_line": 512 }
Prims.Tot
val logor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b
val logor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l let logor #t #l a b =
false
null
false
match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.logor", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.UInt8.t", "FStar.UInt8.__uint_to_t", "FStar.UInt16.logor", "FStar.UInt32.logor", "FStar.UInt64.logor", "FStar.UInt128.logor", "FStar.Int8.logor", "FStar.Int16.logor", "FStar.Int32.logor", "FStar.Int64.logor", "FStar.Int128.logor" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[]
Lib.IntTypes.logor
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 28, "end_line": 587, "start_col": 2, "start_line": 571 }
FStar.Pervasives.Lemma
val logxor_lemma1: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires range (v a) U1 /\ range (v b) U1) (ensures range (v (a `logxor` b)) U1)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a)
val logxor_lemma1: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires range (v a) U1 /\ range (v b) U1) (ensures range (v (a `logxor` b)) U1) let logxor_lemma1 #t #l a b =
false
null
true
match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "Lib.IntTypes.v", "FStar.UInt.logxor_lemma_1", "Lib.IntTypes.bits", "Prims.unit", "FStar.UInt.logxor_commutative", "FStar.UInt.logxor_self", "Lib.IntTypes.v_extensionality" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_lemma1: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires range (v a) U1 /\ range (v b) U1) (ensures range (v (a `logxor` b)) U1)
[]
Lib.IntTypes.logxor_lemma1
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (requires Lib.IntTypes.range (Lib.IntTypes.v a) Lib.IntTypes.U1 /\ Lib.IntTypes.range (Lib.IntTypes.v b) Lib.IntTypes.U1) (ensures Lib.IntTypes.range (Lib.IntTypes.v (Lib.IntTypes.logxor a b)) Lib.IntTypes.U1)
{ "end_col": 36, "end_line": 478, "start_col": 2, "start_line": 470 }
Prims.Tot
val shift_right: #t:inttype -> #l:secrecy_level -> int_t t l -> shiftval t -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b
val shift_right: #t:inttype -> #l:secrecy_level -> int_t t l -> shiftval t -> int_t t l let shift_right #t #l a b =
false
null
false
match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.shiftval", "FStar.UInt8.shift_right", "FStar.UInt16.shift_right", "FStar.UInt32.shift_right", "FStar.UInt64.shift_right", "FStar.UInt128.shift_right", "FStar.Int8.shift_arithmetic_right", "FStar.Int16.shift_arithmetic_right", "FStar.Int32.shift_arithmetic_right", "FStar.Int64.shift_arithmetic_right", "FStar.Int128.shift_arithmetic_right" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right: #t:inttype -> #l:secrecy_level -> int_t t l -> shiftval t -> int_t t l
[]
Lib.IntTypes.shift_right
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.shiftval t -> Lib.IntTypes.int_t t l
{ "end_col": 45, "end_line": 684, "start_col": 2, "start_line": 673 }
Prims.Tot
val ne: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ne #t x y = not (eq x y)
val ne: #t:inttype -> int_t t PUB -> int_t t PUB -> bool let ne #t x y =
false
null
false
not (eq x y)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_Negation", "Lib.IntTypes.eq", "Prims.bool" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ne: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[]
Lib.IntTypes.ne
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
{ "end_col": 28, "end_line": 1072, "start_col": 16, "start_line": 1072 }
Prims.Tot
val eq_mask: #t:inttype{~(S128? t)} -> int_t t SEC -> int_t t SEC -> int_t t SEC
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b))
val eq_mask: #t:inttype{~(S128? t)} -> int_t t SEC -> int_t t SEC -> int_t t SEC let eq_mask #t a b =
false
null
false
match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.lognot", "Lib.IntTypes.logxor", "FStar.UInt8.eq_mask", "FStar.UInt16.eq_mask", "FStar.UInt32.eq_mask", "FStar.UInt64.eq_mask", "FStar.UInt128.eq_mask", "FStar.Int.Cast.uint8_to_int8", "Lib.IntTypes.to_u8", "FStar.Int.Cast.uint16_to_int16", "Lib.IntTypes.to_u16", "FStar.Int.Cast.uint32_to_int32", "Lib.IntTypes.to_u32", "FStar.Int.Cast.uint64_to_int64", "Lib.IntTypes.to_u64" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask: #t:inttype{~(S128? t)} -> int_t t SEC -> int_t t SEC -> int_t t SEC
[]
Lib.IntTypes.eq_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ "end_col": 75, "end_line": 802, "start_col": 2, "start_line": 792 }