effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val logxor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b
val logxor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l let logxor #t #l a b =
false
null
false
match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt8.logxor", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.UInt8.t", "FStar.UInt8.__uint_to_t", "FStar.UInt16.logxor", "FStar.UInt32.logxor", "FStar.UInt64.logxor", "FStar.UInt128.logxor", "FStar.Int8.logxor", "FStar.Int16.logxor", "FStar.Int32.logxor", "FStar.Int64.logxor", "FStar.Int128.logxor" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l
[]
Lib.IntTypes.logxor
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> Lib.IntTypes.int_t t l
{ "end_col": 29, "end_line": 434, "start_col": 2, "start_line": 418 }
Prims.Tot
val ct_abs: #t:inttype{signed t /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> b:int_t t l{v b == abs (v a)}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a
val ct_abs: #t:inttype{signed t /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> b:int_t t l{v b == abs (v a)} let ct_abs #t #l a =
false
null
false
match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.b2t", "Lib.IntTypes.signed", "Prims.l_not", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Prims.op_LessThan", "Lib.IntTypes.minint", "Lib.IntTypes.v", "FStar.Int8.ct_abs", "FStar.Int16.ct_abs", "FStar.Int32.ct_abs", "FStar.Int64.ct_abs", "Prims.eq2", "Prims.int", "Prims.abs" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ct_abs: #t:inttype{signed t /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> b:int_t t l{v b == abs (v a)}
[]
Lib.IntTypes.ct_abs
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l {Lib.IntTypes.minint t < Lib.IntTypes.v a} -> b: Lib.IntTypes.int_t t l {Lib.IntTypes.v b == Prims.abs (Lib.IntTypes.v a)}
{ "end_col": 25, "end_line": 786, "start_col": 2, "start_line": 782 }
Prims.Tot
val rotate_right: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b))
val rotate_right: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l let rotate_right #t #l a b =
false
null
false
logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.rotval", "Lib.IntTypes.logor", "Lib.IntTypes.shift_right", "Lib.IntTypes.shift_left", "Lib.IntTypes.sub", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.size", "Lib.IntTypes.bits" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rotate_right: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l
[]
Lib.IntTypes.rotate_right
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l {Lib.IntTypes.unsigned t} -> b: Lib.IntTypes.rotval t -> Lib.IntTypes.int_t t l
{ "end_col": 69, "end_line": 775, "start_col": 2, "start_line": 775 }
FStar.Pervasives.Lemma
val logand_ones: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` ones t l) == v a)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a)
val logand_ones: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` ones t l) == v a) let logand_ones #t #l a =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logand` (ones U1 l) == u1 0 /\ (u1 1) `logand` (ones U1 l) == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.logand", "Lib.IntTypes.u1", "Lib.IntTypes.ones", "FStar.UInt.logand_lemma_2", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.logand_lemma_2", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_ones: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` ones t l) == v a)
[]
Lib.IntTypes.logand_ones
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logand a (Lib.IntTypes.ones t l)) == Lib.IntTypes.v a)
{ "end_col": 69, "end_line": 521, "start_col": 2, "start_line": 518 }
FStar.Pervasives.Lemma
val logor_zeros: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` zeros t l) == v a)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a)
val logor_zeros: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` zeros t l) == v a) let logor_zeros #t #l a =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logor` (zeros U1 l) == u1 0 /\ (u1 1) `logor` (zeros U1 l) == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Lib.IntTypes.zeros", "FStar.UInt.logor_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.nth_lemma", "FStar.Int.logor", "FStar.Int.zero", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor_zeros: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` zeros t l) == v a)
[]
Lib.IntTypes.logor_zeros
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logor a (Lib.IntTypes.zeros t l)) == Lib.IntTypes.v a)
{ "end_col": 112, "end_line": 609, "start_col": 2, "start_line": 606 }
Prims.Pure
val shift_left: #t:inttype -> #l:secrecy_level -> a:int_t t l -> s:shiftval t -> Pure (int_t t l) (requires unsigned t \/ (0 <= v a /\ v a * pow2 (v s) <= maxint t)) (ensures fun _ -> True)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b
val shift_left: #t:inttype -> #l:secrecy_level -> a:int_t t l -> s:shiftval t -> Pure (int_t t l) (requires unsigned t \/ (0 <= v a /\ v a * pow2 (v s) <= maxint t)) (ensures fun _ -> True) let shift_left #t #l a b =
false
null
false
match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.shiftval", "FStar.UInt8.shift_left", "FStar.UInt16.shift_left", "FStar.UInt32.shift_left", "FStar.UInt64.shift_left", "FStar.UInt128.shift_left", "FStar.Int8.shift_left", "FStar.Int16.shift_left", "FStar.Int32.shift_left", "FStar.Int64.shift_left", "FStar.Int128.shift_left" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_left: #t:inttype -> #l:secrecy_level -> a:int_t t l -> s:shiftval t -> Pure (int_t t l) (requires unsigned t \/ (0 <= v a /\ v a * pow2 (v s) <= maxint t)) (ensures fun _ -> True)
[]
Lib.IntTypes.shift_left
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> s: Lib.IntTypes.shiftval t -> Prims.Pure (Lib.IntTypes.int_t t l)
{ "end_col": 33, "end_line": 768, "start_col": 2, "start_line": 757 }
FStar.Pervasives.Lemma
val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b)
val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b =
false
null
true
match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.UInt.logxor_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Prims.unit", "FStar.UInt.logxor_commutative", "FStar.UInt.logxor_self", "FStar.UInt.logxor_associative", "FStar.Int.logxor_lemma_1", "FStar.Int.logxor_commutative", "FStar.Int.logxor_self", "FStar.Int.logxor_associative" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b)
[]
Lib.IntTypes.logxor_lemma_
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logxor a (Lib.IntTypes.logxor a b)) == Lib.IntTypes.v b)
{ "end_col": 38, "end_line": 451, "start_col": 2, "start_line": 441 }
Prims.Tot
val gt_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b)
val gt_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC let gt_mask #t a b =
false
null
false
logand (gte_mask a b) (neq_mask a b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.logand", "Lib.IntTypes.gte_mask", "Lib.IntTypes.neq_mask" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC
[]
Lib.IntTypes.gt_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ "end_col": 57, "end_line": 925, "start_col": 21, "start_line": 925 }
FStar.Pervasives.Lemma
val eq_mask_logand_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a = v b then v (c `logand` eq_mask a b) == v c else v (c `logand` eq_mask a b) == 0) [SMTPat (c `logand` eq_mask a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c)
val eq_mask_logand_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a = v b then v (c `logand` eq_mask a b) == v c else v (c `logand` eq_mask a b) == 0) [SMTPat (c `logand` eq_mask a b)] let eq_mask_logand_lemma #t a b c =
false
null
true
eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.UInt.logand_commutative", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Lib.IntTypes.eq_mask", "FStar.Int.logand_commutative", "Prims.unit", "Lib.IntTypes.logand_ones", "Lib.IntTypes.logand_zeros", "Lib.IntTypes.eq_mask_lemma" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask_logand_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a = v b then v (c `logand` eq_mask a b) == v c else v (c `logand` eq_mask a b) == 0) [SMTPat (c `logand` eq_mask a b)]
[]
Lib.IntTypes.eq_mask_logand_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> c: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.logand c (Lib.IntTypes.eq_mask a b)) == Lib.IntTypes.v c | _ -> Lib.IntTypes.v (Lib.IntTypes.logand c (Lib.IntTypes.eq_mask a b)) == 0) <: Type0)) [SMTPat (Lib.IntTypes.logand c (Lib.IntTypes.eq_mask a b))]
{ "end_col": 84, "end_line": 874, "start_col": 2, "start_line": 869 }
Prims.Tot
val lte_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b)
val lte_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC let lte_mask #t a b =
false
null
false
logor (lt_mask a b) (eq_mask a b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.logor", "Lib.IntTypes.lt_mask", "Lib.IntTypes.eq_mask" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC
[]
Lib.IntTypes.lte_mask
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ "end_col": 55, "end_line": 931, "start_col": 22, "start_line": 931 }
FStar.Pervasives.Lemma
val shift_right_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:shiftval t -> Lemma (v (shift_right a b) == v a / pow2 (v b)) [SMTPat (v #t #l (shift_right #t #l a b))]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b)
val shift_right_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:shiftval t -> Lemma (v (shift_right a b) == v a / pow2 (v b)) [SMTPat (v #t #l (shift_right #t #l a b))] let shift_right_lemma #t #l a b =
false
null
true
match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.shiftval", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.bool", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.bits", "Lib.IntTypes.shift_right_value_aux_1", "Lib.IntTypes.shift_right_value_aux_3", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:shiftval t -> Lemma (v (shift_right a b) == v a / pow2 (v b)) [SMTPat (v #t #l (shift_right #t #l a b))]
[]
Lib.IntTypes.shift_right_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.shiftval t -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.shift_right a b) == Lib.IntTypes.v a / Prims.pow2 (Lib.IntTypes.v b)) [SMTPat (Lib.IntTypes.v (Lib.IntTypes.shift_right a b))]
{ "end_col": 51, "end_line": 753, "start_col": 2, "start_line": 746 }
FStar.Pervasives.Lemma
val logor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (a `logor` b) == ones_v t else v (a `logor` b) == v b))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a))
val logor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (a `logor` b) == ones_v t else v (a `logor` b) == v b)) let logor_lemma #t #l a b =
false
null
true
logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm ((u1 0) `logor` (ones U1 l) == u1 1 /\ (u1 1) `logor` (ones U1 l) == u1 1); assert_norm ((u1 0) `logor` (zeros U1 l) == u1 0 /\ (u1 1) `logor` (zeros U1 l) == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.SEC", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Lib.IntTypes.zeros", "Prims.unit", "Lib.IntTypes.ones", "FStar.UInt.logor_commutative", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.nth_lemma", "FStar.Int.logor", "Lib.IntTypes.logor_ones", "Lib.IntTypes.logor_zeros" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t))
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (a `logor` b) == ones_v t else v (a `logor` b) == v b))
[]
Lib.IntTypes.logor_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a = 0 \/ Lib.IntTypes.v a = Lib.IntTypes.ones_v t) (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.ones_v t with | true -> Lib.IntTypes.v (Lib.IntTypes.logor a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.logor a b) == Lib.IntTypes.v b) <: Type0))
{ "end_col": 126, "end_line": 626, "start_col": 2, "start_line": 619 }
FStar.Pervasives.Lemma
val logand_le:#t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> Lemma (requires True) (ensures v (logand a b) <= v a /\ v (logand a b) <= v b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b))
val logand_le:#t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> Lemma (requires True) (ensures v (logand a b) <= v a /\ v (logand a b) <= v b) let logand_le #t #l a b =
false
null
true
match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.uint_t", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.UInt8.t", "FStar.UInt8.logand", "FStar.UInt8.__uint_to_t", "Prims.unit", "FStar.UInt.logand_le", "FStar.UInt.to_uint_t", "Lib.IntTypes.v" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_le:#t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> Lemma (requires True) (ensures v (logand a b) <= v a /\ v (logand a b) <= v b)
[]
Lib.IntTypes.logand_le
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.uint_t t l -> b: Lib.IntTypes.uint_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logand a b) <= Lib.IntTypes.v a /\ Lib.IntTypes.v (Lib.IntTypes.logand a b) <= Lib.IntTypes.v b)
{ "end_col": 80, "end_line": 553, "start_col": 2, "start_line": 543 }
FStar.Pervasives.Lemma
val gte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a >= v b then v (gte_mask a b) == ones_v t else v (gte_mask a b) == 0) [SMTPat (gte_mask #t a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> ()
val gte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a >= v b then v (gte_mask a b) == ones_v t else v (gte_mask a b) == 0) [SMTPat (gte_mask #t a b)] let gte_mask_lemma #t a b =
false
null
true
match t with | U1 -> assert_norm (logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> ()
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Lib.IntTypes.lognot", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a >= v b then v (gte_mask a b) == ones_v t else v (gte_mask a b) == 0) [SMTPat (gte_mask #t a b)]
[]
Lib.IntTypes.gte_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a >= Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.gte_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.gte_mask a b) == 0) <: Type0)) [SMTPat (Lib.IntTypes.gte_mask a b)]
{ "end_col": 11, "end_line": 905, "start_col": 2, "start_line": 897 }
FStar.Pervasives.Lemma
val gt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a > v b then v (gt_mask a b) == ones_v t else v (gt_mask a b) == 0) [SMTPat (gt_mask #t a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b)
val gt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a > v b then v (gt_mask a b) == ones_v t else v (gt_mask a b) == 0) [SMTPat (gt_mask #t a b)] let gt_mask_lemma #t a b =
false
null
true
logand_zeros (gte_mask a b); logand_ones (gte_mask a b)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.logand_ones", "Lib.IntTypes.gte_mask", "Prims.unit", "Lib.IntTypes.logand_zeros" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a > v b then v (gt_mask a b) == ones_v t else v (gt_mask a b) == 0) [SMTPat (gt_mask #t a b)]
[]
Lib.IntTypes.gt_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a > Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.gt_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.gt_mask a b) == 0) <: Type0)) [SMTPat (Lib.IntTypes.gt_mask a b)]
{ "end_col": 28, "end_line": 929, "start_col": 2, "start_line": 928 }
FStar.Pervasives.Lemma
val logxor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` b) == v a `logxor_v` v b)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> ()
val logxor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` b) == v a `logxor_v` v b) let logxor_spec #t #l a b =
false
null
true
match t with | U1 -> assert_norm ((u1 0) `logxor` (u1 0) == u1 0 /\ (u1 0) `logxor` (u1 1) == u1 1); assert_norm ((u1 1) `logxor` (u1 0) == u1 1 /\ (u1 1) `logxor` (u1 1) == u1 0); assert_norm (logxor_v #U1 0 0 == 0 /\ logxor_v #U1 0 1 == 1); assert_norm (logxor_v #U1 1 0 == 1 /\ logxor_v #U1 1 1 == 0) | _ -> ()
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Prims.int", "Lib.IntTypes.logxor_v", "Lib.IntTypes.U1", "Prims.unit", "Lib.IntTypes.SEC", "Lib.IntTypes.logxor", "Lib.IntTypes.u1" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` b) == v a `logxor_v` v b)
[]
Lib.IntTypes.logxor_spec
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logxor a b) == Lib.IntTypes.logxor_v (Lib.IntTypes.v a) (Lib.IntTypes.v b))
{ "end_col": 11, "end_line": 487, "start_col": 2, "start_line": 481 }
Prims.Tot
val div: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y
val div: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB let div #t x y =
false
null
false
match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Prims.l_or", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "FStar.Int.op_Slash", "FStar.UInt8.div", "FStar.UInt16.div", "FStar.UInt32.div", "FStar.UInt64.div", "FStar.Int8.div", "Prims.unit", "FStar.Int.pow2_values", "FStar.Int16.div", "FStar.Int32.div", "FStar.Int64.div" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB
[]
Lib.IntTypes.div
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> b: Lib.IntTypes.int_t t Lib.IntTypes.PUB { Lib.IntTypes.v b <> 0 /\ (Lib.IntTypes.unsigned t \/ Lib.IntTypes.range (Lib.IntTypes.v a / Lib.IntTypes.v b) t) } -> Lib.IntTypes.int_t t Lib.IntTypes.PUB
{ "end_col": 44, "end_line": 1037, "start_col": 2, "start_line": 1028 }
FStar.Pervasives.Lemma
val lte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a <= v b then v (lte_mask a b) == ones_v t else v (lte_mask a b) == 0) [SMTPat (lte_mask #t a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b))
val lte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a <= v b then v (lte_mask a b) == ones_v t else v (lte_mask a b) == 0) [SMTPat (lte_mask #t a b)] let lte_mask_lemma #t a b =
false
null
true
match t with | U1 -> assert_norm (logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Prims.op_GreaterThan", "Lib.IntTypes.v", "FStar.UInt.logor_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.lt_mask", "Prims.bool", "Prims.op_Equality", "Lib.IntTypes.range_t", "FStar.UInt.logor_lemma_2", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a <= v b then v (lte_mask a b) == ones_v t else v (lte_mask a b) == 0) [SMTPat (lte_mask #t a b)]
[]
Lib.IntTypes.lte_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a <= Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.lte_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.lte_mask a b) == 0) <: Type0)) [SMTPat (Lib.IntTypes.lte_mask a b)]
{ "end_col": 52, "end_line": 945, "start_col": 2, "start_line": 934 }
Prims.Tot
val lte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte #t x y = match t with | U1 -> UInt8.lte x y | U8 -> UInt8.lte x y | U16 -> UInt16.lte x y | U32 -> UInt32.lte x y | U64 -> UInt64.lte x y | U128 -> UInt128.lte x y | S8 -> Int8.lte x y | S16 -> Int16.lte x y | S32 -> Int32.lte x y | S64 -> Int64.lte x y | S128 -> Int128.lte x y
val lte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool let lte #t x y =
false
null
false
match t with | U1 -> UInt8.lte x y | U8 -> UInt8.lte x y | U16 -> UInt16.lte x y | U32 -> UInt32.lte x y | U64 -> UInt64.lte x y | U128 -> UInt128.lte x y | S8 -> Int8.lte x y | S16 -> Int16.lte x y | S32 -> Int32.lte x y | S64 -> Int64.lte x y | S128 -> Int128.lte x y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.lte", "FStar.UInt16.lte", "FStar.UInt32.lte", "FStar.UInt64.lte", "FStar.UInt128.lte", "FStar.Int8.lte", "FStar.Int16.lte", "FStar.Int32.lte", "FStar.Int64.lte", "FStar.Int128.lte", "Prims.bool" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = () let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y let lt_lemma #t x y = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[]
Lib.IntTypes.lte
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
{ "end_col": 26, "end_line": 1104, "start_col": 2, "start_line": 1093 }
Prims.Tot
val lt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y
val lt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool let lt #t x y =
false
null
false
match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.lt", "FStar.UInt16.lt", "FStar.UInt32.lt", "FStar.UInt64.lt", "FStar.UInt128.lt", "FStar.Int8.lt", "FStar.Int16.lt", "FStar.Int32.lt", "FStar.Int64.lt", "FStar.Int128.lt", "Prims.bool" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = ()
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
[]
Lib.IntTypes.lt
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
{ "end_col": 25, "end_line": 1088, "start_col": 2, "start_line": 1077 }
Prims.Tot
val mod: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y
val mod: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB let mod #t x y =
false
null
false
match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Prims.l_or", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "FStar.Int.op_Slash", "FStar.UInt8.rem", "FStar.UInt16.rem", "FStar.UInt32.rem", "FStar.UInt64.rem", "FStar.Int8.rem", "Prims.unit", "FStar.Int.pow2_values", "FStar.Int16.rem", "FStar.Int32.rem", "FStar.Int64.rem" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB
[]
Lib.IntTypes.mod
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> b: Lib.IntTypes.int_t t Lib.IntTypes.PUB { Lib.IntTypes.v b <> 0 /\ (Lib.IntTypes.unsigned t \/ Lib.IntTypes.range (Lib.IntTypes.v a / Lib.IntTypes.v b) t) } -> Lib.IntTypes.int_t t Lib.IntTypes.PUB
{ "end_col": 44, "end_line": 1057, "start_col": 2, "start_line": 1048 }
FStar.Pervasives.Lemma
val div_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (v (div a b) == FStar.Int.(v a / v b)) [SMTPat (v #t (div #t a b))]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
val div_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (v (div a b) == FStar.Int.(v a / v b)) [SMTPat (v #t (div #t a b))] let div_lemma #t a b =
false
null
true
match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Prims.l_or", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "FStar.Int.op_Slash", "FStar.Int.pow2_values", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (v (div a b) == FStar.Int.(v a / v b)) [SMTPat (v #t (div #t a b))]
[]
Lib.IntTypes.div_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> b: Lib.IntTypes.int_t t Lib.IntTypes.PUB { Lib.IntTypes.v b <> 0 /\ (Lib.IntTypes.unsigned t \/ Lib.IntTypes.range (Lib.IntTypes.v a / Lib.IntTypes.v b) t) } -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.div a b) == Lib.IntTypes.v a / Lib.IntTypes.v b) [SMTPat (Lib.IntTypes.v (Lib.IntTypes.div a b))]
{ "end_col": 29, "end_line": 1045, "start_col": 2, "start_line": 1040 }
FStar.Pervasives.Lemma
val mod_mask_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (a `logand` mod_mask m) == v a % pow2 (v m)) [SMTPat (a `logand` mod_mask #t m)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end
val mod_mask_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (a `logand` mod_mask m) == v a % pow2 (v m)) [SMTPat (a `logand` mod_mask #t m)] let mod_mask_lemma #t #l a m =
false
null
true
mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.shiftval", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pow2", "Lib.IntTypes.uint_v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.maxint", "Prims.op_BarBar", "Lib.IntTypes.unsigned", "Lib.IntTypes.v", "Prims.op_Equality", "Prims.int", "FStar.UInt.logand_lemma_1", "Lib.IntTypes.bits", "Prims.bool", "FStar.UInt.logand_mask", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_le_compat", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Addition", "Lib.IntTypes.range", "Lib.IntTypes.mod_mask_value" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_mask_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (a `logand` mod_mask m) == v a % pow2 (v m)) [SMTPat (a `logand` mod_mask #t m)]
[]
Lib.IntTypes.mod_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> m: Lib.IntTypes.shiftval t {Prims.pow2 (Lib.IntTypes.uint_v m) <= Lib.IntTypes.maxint t} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logand a (Lib.IntTypes.mod_mask m)) == Lib.IntTypes.v a % Prims.pow2 (Lib.IntTypes.v m)) [SMTPat (Lib.IntTypes.logand a (Lib.IntTypes.mod_mask m))]
{ "end_col": 7, "end_line": 976, "start_col": 2, "start_line": 959 }
FStar.Pervasives.Lemma
val mod_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (if signed t then v (mod a b) == FStar.Int.mod #(bits t) (v a) (v b) else v (mod a b) == FStar.UInt.mod #(bits t) (v a) (v b)) [SMTPat (v #t (mod #t a b))]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
val mod_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (if signed t then v (mod a b) == FStar.Int.mod #(bits t) (v a) (v b) else v (mod a b) == FStar.UInt.mod #(bits t) (v a) (v b)) [SMTPat (v #t (mod #t a b))] let mod_lemma #t a b =
false
null
true
match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Prims.l_or", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "FStar.Int.op_Slash", "FStar.Int.pow2_values", "Prims.unit" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (if signed t then v (mod a b) == FStar.Int.mod #(bits t) (v a) (v b) else v (mod a b) == FStar.UInt.mod #(bits t) (v a) (v b)) [SMTPat (v #t (mod #t a b))]
[]
Lib.IntTypes.mod_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> b: Lib.IntTypes.int_t t Lib.IntTypes.PUB { Lib.IntTypes.v b <> 0 /\ (Lib.IntTypes.unsigned t \/ Lib.IntTypes.range (Lib.IntTypes.v a / Lib.IntTypes.v b) t) } -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.signed t with | true -> Lib.IntTypes.v (Lib.IntTypes.mod a b) == FStar.Int.mod (Lib.IntTypes.v a) (Lib.IntTypes.v b) | _ -> Lib.IntTypes.v (Lib.IntTypes.mod a b) == FStar.UInt.mod (Lib.IntTypes.v a) (Lib.IntTypes.v b)) <: Type0)) [SMTPat (Lib.IntTypes.v (Lib.IntTypes.mod a b))]
{ "end_col": 29, "end_line": 1065, "start_col": 2, "start_line": 1060 }
FStar.Pervasives.Lemma
val neq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (neq_mask a b) == 0 else v (neq_mask a b) == ones_v t) [SMTPat (neq_mask #t a b)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
val neq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (neq_mask a b) == 0 else v (neq_mask a b) == ones_v t) [SMTPat (neq_mask #t a b)] let neq_mask_lemma #t a b =
false
null
true
match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.lognot", "Lib.IntTypes.u1", "FStar.UInt.lognot_self", "Lib.IntTypes.bits", "Prims.unit", "FStar.UInt.lognot_lemma_1" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val neq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (neq_mask a b) == 0 else v (neq_mask a b) == ones_v t) [SMTPat (neq_mask #t a b)]
[]
Lib.IntTypes.neq_mask_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.neq_mask a b) == 0 | _ -> Lib.IntTypes.v (Lib.IntTypes.neq_mask a b) == Lib.IntTypes.ones_v t) <: Type0)) [SMTPat (Lib.IntTypes.neq_mask a b)]
{ "end_col": 32, "end_line": 884, "start_col": 2, "start_line": 880 }
Prims.Tot
val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits)
val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a =
false
null
false
assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits)
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.signed", "Lib.IntTypes.secrecy_level", "Prims.l_and", "Prims.op_LessThan", "Lib.IntTypes.bits", "Lib.IntTypes.int_t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.add", "Lib.IntTypes.logand", "Prims.unit", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.sub", "Lib.IntTypes.shift_right_lemma", "Lib.IntTypes.size", "Lib.IntTypes.shift_right", "Lib.IntTypes.shift_left_lemma", "Lib.IntTypes.mk_int", "Lib.IntTypes.shift_left", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.op_At_Percent_Dot" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'}
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 1000, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'}
[]
Lib.IntTypes.conditional_subtract
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t': Lib.IntTypes.inttype{Lib.IntTypes.signed t' /\ Lib.IntTypes.bits t' < Lib.IntTypes.bits t} -> a: Lib.IntTypes.int_t t l {0 <= Lib.IntTypes.v a /\ Lib.IntTypes.v a <= Prims.pow2 (Lib.IntTypes.bits t') - 1} -> b: Lib.IntTypes.int_t t l {Lib.IntTypes.v b = Lib.IntTypes.v a @%. t'}
{ "end_col": 36, "end_line": 1009, "start_col": 2, "start_line": 995 }
FStar.Pervasives.Lemma
val logxor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (a `logxor` (a `logxor` b) == b /\ a `logxor` (b `logxor` a) == b /\ a `logxor` (mk_int #t #l 0) == a)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a
val logxor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (a `logxor` (a `logxor` b) == b /\ a `logxor` (b `logxor` a) == b /\ a `logxor` (mk_int #t #l 0) == a) let logxor_lemma #t #l a b =
false
null
true
logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; (match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b)); v_extensionality (logxor a (logxor b a)) b; (match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a)); v_extensionality (logxor a (mk_int #t #l 0)) a
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.v_extensionality", "Lib.IntTypes.logxor", "Lib.IntTypes.mk_int", "Prims.unit", "FStar.UInt.logxor_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.logxor_lemma_1", "FStar.UInt.logxor_commutative", "FStar.Int.logxor_commutative", "Lib.IntTypes.logxor_lemma_" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (a `logxor` (a `logxor` b) == b /\ a `logxor` (b `logxor` a) == b /\ a `logxor` (mk_int #t #l 0) == a)
[]
Lib.IntTypes.logxor_lemma
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.logxor a (Lib.IntTypes.logxor a b) == b /\ Lib.IntTypes.logxor a (Lib.IntTypes.logxor b a) == b /\ Lib.IntTypes.logxor a (Lib.IntTypes.mk_int 0) == a)
{ "end_col": 48, "end_line": 467, "start_col": 2, "start_line": 454 }
FStar.Pervasives.Lemma
val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m =
false
null
true
shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.shiftval", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pow2", "Lib.IntTypes.uint_v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.maxint", "FStar.Math.Lemmas.small_modulo_lemma_1", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.bits", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Math.Lemmas.pow2_double_mult", "Lib.IntTypes.shift_left_lemma", "Lib.IntTypes.mk_int" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1)
[]
Lib.IntTypes.mod_mask_value
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Lib.IntTypes.shiftval t {Prims.pow2 (Lib.IntTypes.uint_v m) <= Lib.IntTypes.maxint t} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.mod_mask m) == Prims.pow2 (Lib.IntTypes.v m) - 1)
{ "end_col": 55, "end_line": 956, "start_col": 2, "start_line": 952 }
Prims.Tot
val cast_mod: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t'} -> l':secrecy_level{PUB? l \/ SEC? l'} -> a:int_t t l -> b:int_t t' l'{v b == v a @%. t'}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end
val cast_mod: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t'} -> l':secrecy_level{PUB? l \/ SEC? l'} -> a:int_t t l -> b:int_t t' l'{v b == v a @%. t'} let cast_mod #t #l t' l' a =
false
null
false
assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` (mod_mask m)) in cast t' l' b
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.signed", "Lib.IntTypes.secrecy_level", "Prims.l_or", "Lib.IntTypes.uu___is_PUB", "Lib.IntTypes.uu___is_SEC", "Lib.IntTypes.int_t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.bits", "Lib.IntTypes.cast", "Prims.bool", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.op_At_Percent_Dot", "Lib.IntTypes.logand", "Lib.IntTypes.mod_mask", "Lib.IntTypes.conditional_subtract", "Prims.unit", "Lib.IntTypes.mod_mask_lemma", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.size", "Prims.eq2", "FStar.Pervasives.assert_norm", "Prims.pow2" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 1000, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cast_mod: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t'} -> l':secrecy_level{PUB? l \/ SEC? l'} -> a:int_t t l -> b:int_t t' l'{v b == v a @%. t'}
[]
Lib.IntTypes.cast_mod
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t': Lib.IntTypes.inttype{Lib.IntTypes.signed t'} -> l': Lib.IntTypes.secrecy_level{PUB? l \/ SEC? l'} -> a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t' l' {Lib.IntTypes.v b == Lib.IntTypes.v a @%. t'}
{ "end_col": 7, "end_line": 1022, "start_col": 2, "start_line": 1012 }
FStar.Pervasives.Lemma
val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0)
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end
val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b =
false
null
true
match t with | S8 -> assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else (modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8)) | S16 -> assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else (modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16)) | S32 -> if 0 <= v a then modulo_lemma (v a) (pow2 32) else (modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32)) | S64 -> if 0 <= v a then modulo_lemma (v a) (pow2 64) else (modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64))
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "lemma" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.b2t", "Lib.IntTypes.signed", "Prims.l_not", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "FStar.Math.Lemmas.modulo_lemma", "Prims.pow2", "Prims.bool", "Prims.op_Addition", "Prims.unit", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0)
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0)
[]
Lib.IntTypes.eq_mask_lemma_signed
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.eq_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.eq_mask a b) == 0) <: Type0))
{ "end_col": 7, "end_line": 860, "start_col": 2, "start_line": 822 }
Prims.Tot
val cast: #t:inttype -> #l:secrecy_level -> t':inttype -> l':secrecy_level{PUB? l \/ SEC? l'} -> u1:int_t t l{unsigned t' \/ range (v u1) t'} -> u2:int_t t' l'{v u2 == v u1 @%. t'}
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u
val cast: #t:inttype -> #l:secrecy_level -> t':inttype -> l':secrecy_level{PUB? l \/ SEC? l'} -> u1:int_t t l{unsigned t' \/ range (v u1) t'} -> u2:int_t t' l'{v u2 == v u1 @%. t'} let cast #t #l t' l' u =
false
null
false
assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u
{ "checked_file": "Lib.IntTypes.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Prims.l_or", "Prims.b2t", "Lib.IntTypes.uu___is_PUB", "Lib.IntTypes.uu___is_SEC", "Lib.IntTypes.int_t", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "Lib.IntTypes.v", "FStar.Pervasives.Native.Mktuple2", "FStar.Int.Cast.uint8_to_uint16", "FStar.Int.Cast.uint8_to_uint32", "FStar.Int.Cast.uint8_to_uint64", "FStar.UInt128.uint64_to_uint128", "FStar.Int.Cast.uint8_to_int8", "FStar.Int.Cast.uint8_to_int16", "FStar.Int.Cast.uint8_to_int32", "FStar.Int.Cast.uint8_to_int64", "Lib.IntTypes.uint64_to_int128", "FStar.UInt8.rem", "FStar.UInt8.__uint_to_t", "FStar.Int.Cast.uint16_to_uint8", "FStar.Int.Cast.uint16_to_uint32", "FStar.Int.Cast.uint16_to_uint64", "FStar.Int.Cast.uint16_to_int8", "FStar.Int.Cast.uint16_to_int16", "FStar.Int.Cast.uint16_to_int32", "FStar.Int.Cast.uint16_to_int64", "FStar.Int.Cast.uint32_to_uint8", "FStar.Int.Cast.uint32_to_uint16", "FStar.Int.Cast.uint32_to_uint64", "FStar.Int.Cast.uint32_to_int8", "FStar.Int.Cast.uint32_to_int16", "FStar.Int.Cast.uint32_to_int32", "FStar.Int.Cast.uint32_to_int64", "FStar.Int.Cast.uint64_to_uint8", "FStar.Int.Cast.uint64_to_uint16", "FStar.Int.Cast.uint64_to_uint32", "FStar.Int.Cast.uint64_to_int8", "FStar.Int.Cast.uint64_to_int16", "FStar.Int.Cast.uint64_to_int32", "FStar.Int.Cast.uint64_to_int64", "FStar.Int.Cast.Full.uint128_to_uint64", "FStar.UInt128.uint128_to_uint64", "Lib.IntTypes.uint128_to_int128", "FStar.Int.Cast.int8_to_uint8", "FStar.Int.Cast.int8_to_uint16", "FStar.Int.Cast.int8_to_uint32", "FStar.Int.Cast.int8_to_uint64", "Lib.IntTypes.int64_to_uint128", "FStar.Int.Cast.int8_to_int64", "FStar.Int.Cast.int8_to_int16", "FStar.Int.Cast.int8_to_int32", "Lib.IntTypes.int64_to_int128", "FStar.Int.Cast.int16_to_uint8", "FStar.Int.Cast.int16_to_uint16", "FStar.Int.Cast.int16_to_uint32", "FStar.Int.Cast.int16_to_uint64", "FStar.Int.Cast.int16_to_int64", "FStar.Int.Cast.int16_to_int8", "FStar.Int.Cast.int16_to_int32", "FStar.Int.Cast.int32_to_uint8", "FStar.Int.Cast.int32_to_uint16", "FStar.Int.Cast.int32_to_uint32", "FStar.Int.Cast.int32_to_uint64", "FStar.Int.Cast.int32_to_int64", "FStar.Int.Cast.int32_to_int8", "FStar.Int.Cast.int32_to_int16", "FStar.Int.Cast.int64_to_uint8", "FStar.Int.Cast.int64_to_uint16", "FStar.Int.Cast.int64_to_uint32", "FStar.Int.Cast.int64_to_uint64", "FStar.Int.Cast.int64_to_int8", "FStar.Int.Cast.int64_to_int16", "FStar.Int.Cast.int64_to_int32", "Lib.IntTypes.int128_to_uint64", "Lib.IntTypes.int128_to_uint128", "Prims.eq2", "Prims.int", "Lib.IntTypes.op_At_Percent_Dot", "Prims.unit", "FStar.Math.Lemmas.modulo_modulo_lemma", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "FStar.Mul.op_Star" ]
[]
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])]
false
false
Lib.IntTypes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 1000, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cast: #t:inttype -> #l:secrecy_level -> t':inttype -> l':secrecy_level{PUB? l \/ SEC? l'} -> u1:int_t t l{unsigned t' \/ range (v u1) t'} -> u2:int_t t' l'{v u2 == v u1 @%. t'}
[]
Lib.IntTypes.cast
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t': Lib.IntTypes.inttype -> l': Lib.IntTypes.secrecy_level{PUB? l \/ SEC? l'} -> u1: Lib.IntTypes.int_t t l {Lib.IntTypes.unsigned t' \/ Lib.IntTypes.range (Lib.IntTypes.v u1) t'} -> u2: Lib.IntTypes.int_t t' l' {Lib.IntTypes.v u2 == Lib.IntTypes.v u1 @%. t'}
{ "end_col": 20, "end_line": 261, "start_col": 2, "start_line": 117 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lbytes len = lbuffer uint8 len
let lbytes len =
false
null
false
lbuffer uint8 len
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
true
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lbytes : len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Impl.K256.Verify.lbytes
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> Type0
{ "end_col": 34, "end_line": 28, "start_col": 17, "start_line": 28 }
FStar.HyperStack.ST.Stack
val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q)))
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_signature r_q s_q signature = let is_r_valid = QA.load_qelem_vartime r_q (sub signature 0ul 32ul) in let is_s_valid = QA.load_qelem_vartime s_q (sub signature 32ul 32ul) in is_r_valid && is_s_valid
val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q))) let load_signature r_q s_q signature =
true
null
false
let is_r_valid = QA.load_qelem_vartime r_q (sub signature 0ul 32ul) in let is_s_valid = QA.load_qelem_vartime s_q (sub signature 32ul 32ul) in is_r_valid && is_s_valid
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Verify.lbytes", "FStar.UInt32.__uint_to_t", "Prims.op_AmpAmp", "Prims.bool", "Hacl.K256.Scalar.load_qelem_vartime", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.uint8" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame () val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) [@CInline] let fmul_eq_vartime r z x = push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b inline_for_extraction noextract val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_avoid_finv p r = let h0 = ST.get () in let x, y, z = getx p, gety p, getz p in push_frame (); let r_bytes = create 32ul (u8 0) in let r_fe = create_felem () in let tmp_q = create_felem () in let tmp_x = create_felem () in QA.store_qelem r_bytes r; load_felem r_fe r_bytes; let h1 = ST.get () in //assert (inv_fully_reduced h1 r_fe); //assert (as_nat h1 r_fe == qas_nat h1 r); let h2 = ST.get () in fnormalize tmp_x x; let h3 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x); //assert (inv_fully_reduced h3 tmp_x); //assert (inv_lazy_reduced2 h3 z); let is_rz_x = fmul_eq_vartime r_fe z tmp_x in //assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x)); let res : bool = if not is_rz_x then begin let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in if is_r_lt_p_m_q then begin assert (as_nat h1 r_fe < S.prime - S.q); make_u52_5 tmp_q (make_order_k256 ()); let h4 = ST.get () in BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q); fadd tmp_q r_fe tmp_q; fmul_eq_vartime tmp_q z tmp_x end //assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x)); else false end else true in pop_frame (); KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r); assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r)); let h5 = ST.get () in assert (modifies0 h0 h5); res inline_for_extraction noextract val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_g_double_split_lambda_vartime res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (point_eval h1 res) == S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk))); KL.lemma_aff_is_point_at_inf (point_eval h1 res); KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk)); let b = if is_proj_point_at_inf_vartime res then false else ecdsa_verify_avoid_finv res r in pop_frame (); b inline_for_extraction noextract val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q)))
false
false
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q)))
[]
Hacl.Impl.K256.Verify.load_signature
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r_q: Hacl.K256.Scalar.qelem -> s_q: Hacl.K256.Scalar.qelem -> signature: Hacl.Impl.K256.Verify.lbytes 64ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 26, "end_line": 183, "start_col": 38, "start_line": 180 }
FStar.HyperStack.ST.Stack
val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x))
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_eq_vartime r z x = push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b
val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) let fmul_eq_vartime r z x =
true
null
false
push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1, 1, 1, 1, 2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[]
[ "Hacl.K256.Field.felem", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.K256.Field.is_felem_eq_vartime", "Prims._assert", "Hacl.K256.Field.inv_fully_reduced", "Hacl.Spec.K256.Field52.Lemmas.normalize5_lemma", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Hacl.K256.Field.as_felem5", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Field.fnormalize", "Hacl.K256.Field.fmul", "Hacl.K256.Field.create_felem", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame () val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) [@CInline]
false
false
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x))
[]
Hacl.Impl.K256.Verify.fmul_eq_vartime
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.K256.Field.felem -> z: Hacl.K256.Field.felem -> x: Hacl.K256.Field.felem -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 3, "end_line": 71, "start_col": 2, "start_line": 61 }
FStar.HyperStack.ST.Stack
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame ()
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z =
true
null
false
push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame ()
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[]
[ "Hacl.K256.Scalar.qelem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qinv", "Hacl.K256.Scalar.create_qelem", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
false
false
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
[]
Hacl.Impl.K256.Verify.ecdsa_verify_get_u12
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u1: Hacl.K256.Scalar.qelem -> u2: Hacl.K256.Scalar.qelem -> r: Hacl.K256.Scalar.qelem -> s: Hacl.K256.Scalar.qelem -> z: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 48, "start_col": 2, "start_line": 43 }
FStar.HyperStack.ST.Stack
val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_g_double_split_lambda_vartime res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (point_eval h1 res) == S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk))); KL.lemma_aff_is_point_at_inf (point_eval h1 res); KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk)); let b = if is_proj_point_at_inf_vartime res then false else ecdsa_verify_avoid_finv res r in pop_frame (); b
val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_cmpr r pk u1 u2 =
true
null
false
push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_g_double_split_lambda_vartime res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (point_eval h1 res) == S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk))); KL.lemma_aff_is_point_at_inf (point_eval h1 res); KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk)); let b = if is_proj_point_at_inf_vartime res then false else ecdsa_verify_avoid_finv res r in pop_frame (); b
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Point.point", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.K256.Verify.ecdsa_verify_avoid_finv", "Hacl.Impl.K256.Point.is_proj_point_at_inf_vartime", "Spec.K256.Lemmas.lemma_aff_is_point_at_inf", "Spec.K256.point_mul_double_g", "Hacl.K256.Scalar.qas_nat", "Hacl.Impl.K256.Point.point_eval", "Prims._assert", "Prims.eq2", "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.to_aff_point", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.K256.GLV.point_mul_g_double_split_lambda_vartime", "Hacl.Impl.K256.Point.create_point", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame () val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) [@CInline] let fmul_eq_vartime r z x = push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b inline_for_extraction noextract val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_avoid_finv p r = let h0 = ST.get () in let x, y, z = getx p, gety p, getz p in push_frame (); let r_bytes = create 32ul (u8 0) in let r_fe = create_felem () in let tmp_q = create_felem () in let tmp_x = create_felem () in QA.store_qelem r_bytes r; load_felem r_fe r_bytes; let h1 = ST.get () in //assert (inv_fully_reduced h1 r_fe); //assert (as_nat h1 r_fe == qas_nat h1 r); let h2 = ST.get () in fnormalize tmp_x x; let h3 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x); //assert (inv_fully_reduced h3 tmp_x); //assert (inv_lazy_reduced2 h3 z); let is_rz_x = fmul_eq_vartime r_fe z tmp_x in //assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x)); let res : bool = if not is_rz_x then begin let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in if is_r_lt_p_m_q then begin assert (as_nat h1 r_fe < S.prime - S.q); make_u52_5 tmp_q (make_order_k256 ()); let h4 = ST.get () in BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q); fadd tmp_q r_fe tmp_q; fmul_eq_vartime tmp_q z tmp_x end //assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x)); else false end else true in pop_frame (); KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r); assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r)); let h5 = ST.get () in assert (modifies0 h0 h5); res inline_for_extraction noextract val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
false
false
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
[]
Hacl.Impl.K256.Verify.ecdsa_verify_cmpr
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.K256.Scalar.qelem -> pk: Hacl.Impl.K256.Point.point -> u1: Hacl.K256.Scalar.qelem -> u2: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 3, "end_line": 164, "start_col": 2, "start_line": 147 }
FStar.HyperStack.ST.Stack
val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_avoid_finv p r = let h0 = ST.get () in let x, y, z = getx p, gety p, getz p in push_frame (); let r_bytes = create 32ul (u8 0) in let r_fe = create_felem () in let tmp_q = create_felem () in let tmp_x = create_felem () in QA.store_qelem r_bytes r; load_felem r_fe r_bytes; let h1 = ST.get () in //assert (inv_fully_reduced h1 r_fe); //assert (as_nat h1 r_fe == qas_nat h1 r); let h2 = ST.get () in fnormalize tmp_x x; let h3 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x); //assert (inv_fully_reduced h3 tmp_x); //assert (inv_lazy_reduced2 h3 z); let is_rz_x = fmul_eq_vartime r_fe z tmp_x in //assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x)); let res : bool = if not is_rz_x then begin let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in if is_r_lt_p_m_q then begin assert (as_nat h1 r_fe < S.prime - S.q); make_u52_5 tmp_q (make_order_k256 ()); let h4 = ST.get () in BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q); fadd tmp_q r_fe tmp_q; fmul_eq_vartime tmp_q z tmp_x end //assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x)); else false end else true in pop_frame (); KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r); assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r)); let h5 = ST.get () in assert (modifies0 h0 h5); res
val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_avoid_finv p r =
true
null
false
let h0 = ST.get () in let x, y, z = getx p, gety p, getz p in push_frame (); let r_bytes = create 32ul (u8 0) in let r_fe = create_felem () in let tmp_q = create_felem () in let tmp_x = create_felem () in QA.store_qelem r_bytes r; load_felem r_fe r_bytes; let h1 = ST.get () in let h2 = ST.get () in fnormalize tmp_x x; let h3 = ST.get () in BL.normalize5_lemma (1, 1, 1, 1, 2) (as_felem5 h2 x); let is_rz_x = fmul_eq_vartime r_fe z tmp_x in let res:bool = if not is_rz_x then let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in if is_r_lt_p_m_q then (assert (as_nat h1 r_fe < S.prime - S.q); make_u52_5 tmp_q (make_order_k256 ()); let h4 = ST.get () in BL.add5_lemma (1, 1, 1, 1, 1) (1, 1, 1, 1, 1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q); fadd tmp_q r_fe tmp_q; fmul_eq_vartime tmp_q z tmp_x) else false else true in pop_frame (); KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r); assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r)); let h5 = ST.get () in assert (modifies0 h0 h5); res
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[]
[ "Hacl.Impl.K256.Point.point", "Hacl.K256.Scalar.qelem", "Hacl.K256.Field.felem", "Prims.unit", "Prims._assert", "Lib.Buffer.modifies0", "Prims.bool", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.l_iff", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Spec.K256.PointOps.fmul", "Hacl.K256.Field.feval", "Spec.K256.PointOps.finv", "Spec.K256.PointOps.q", "Hacl.K256.Scalar.qas_nat", "Spec.K256.Lemmas.ecdsa_verify_avoid_finv", "Hacl.Impl.K256.Point.point_eval", "FStar.HyperStack.ST.pop_frame", "Prims.op_Negation", "Hacl.Impl.K256.Verify.fmul_eq_vartime", "Hacl.K256.Field.fadd", "Hacl.Spec.K256.Field52.Lemmas.add5_lemma", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Hacl.K256.Field.as_felem5", "Hacl.K256.Field.make_u52_5", "Hacl.K256.Field.make_order_k256", "Prims.op_LessThan", "Hacl.K256.Field.as_nat", "Prims.op_Subtraction", "Spec.K256.PointOps.prime", "Hacl.K256.Field.is_felem_lt_prime_minus_order_vartime", "Hacl.Spec.K256.Field52.Lemmas.normalize5_lemma", "Hacl.K256.Field.fnormalize", "Hacl.K256.Field.load_felem", "Hacl.K256.Scalar.store_qelem", "Hacl.K256.Field.create_felem", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "Hacl.Impl.K256.Point.getz", "Hacl.Impl.K256.Point.gety", "Hacl.Impl.K256.Point.getx" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame () val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) [@CInline] let fmul_eq_vartime r z x = push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b inline_for_extraction noextract val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
false
false
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
[]
Hacl.Impl.K256.Verify.ecdsa_verify_avoid_finv
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Impl.K256.Point.point -> r: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 129, "start_col": 33, "start_line": 84 }
FStar.HyperStack.ST.Stack
val ecdsa_verify_hashed_msg (msgHash:lbytes 32ul) (public_key signature:lbytes 64ul) : Stack bool (requires fun h -> live h msgHash /\ live h public_key /\ live h signature) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == S.ecdsa_verify_hashed_msg (as_seq h0 msgHash) (as_seq h0 public_key) (as_seq h0 signature))
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_hashed_msg msgHash public_key signature = push_frame (); let tmp = create 35ul (u64 0) in let pk = sub tmp 0ul 15ul in let r_q = sub tmp 15ul 4ul in let s_q = sub tmp 19ul 4ul in let u1 = sub tmp 23ul 4ul in let u2 = sub tmp 27ul 4ul in let m_q = sub tmp 31ul 4ul in let is_pk_valid = load_point_vartime pk public_key in let is_rs_valid = load_signature r_q s_q signature in QA.load_qelem_modq m_q msgHash; let res = if not (is_pk_valid && is_rs_valid) then false else begin ecdsa_verify_get_u12 u1 u2 r_q s_q m_q; ecdsa_verify_cmpr r_q pk u1 u2 end in pop_frame (); res
val ecdsa_verify_hashed_msg (msgHash:lbytes 32ul) (public_key signature:lbytes 64ul) : Stack bool (requires fun h -> live h msgHash /\ live h public_key /\ live h signature) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == S.ecdsa_verify_hashed_msg (as_seq h0 msgHash) (as_seq h0 public_key) (as_seq h0 signature)) let ecdsa_verify_hashed_msg msgHash public_key signature =
true
null
false
push_frame (); let tmp = create 35ul (u64 0) in let pk = sub tmp 0ul 15ul in let r_q = sub tmp 15ul 4ul in let s_q = sub tmp 19ul 4ul in let u1 = sub tmp 23ul 4ul in let u2 = sub tmp 27ul 4ul in let m_q = sub tmp 31ul 4ul in let is_pk_valid = load_point_vartime pk public_key in let is_rs_valid = load_signature r_q s_q signature in QA.load_qelem_modq m_q msgHash; let res = if not (is_pk_valid && is_rs_valid) then false else (ecdsa_verify_get_u12 u1 u2 r_q s_q m_q; ecdsa_verify_cmpr r_q pk u1 u2) in pop_frame (); res
{ "checked_file": "Hacl.Impl.K256.Verify.fst.checked", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[]
[ "Hacl.Impl.K256.Verify.lbytes", "FStar.UInt32.__uint_to_t", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Prims.op_Negation", "Prims.op_AmpAmp", "Hacl.Impl.K256.Verify.ecdsa_verify_cmpr", "Hacl.Impl.K256.Verify.ecdsa_verify_get_u12", "Hacl.K256.Scalar.load_qelem_modq", "Hacl.Impl.K256.Verify.load_signature", "Hacl.Impl.K256.Point.load_point_vartime", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.uint64", "Lib.Buffer.create", "Lib.IntTypes.u64", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame () val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) [@CInline] let fmul_eq_vartime r z x = push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b inline_for_extraction noextract val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_avoid_finv p r = let h0 = ST.get () in let x, y, z = getx p, gety p, getz p in push_frame (); let r_bytes = create 32ul (u8 0) in let r_fe = create_felem () in let tmp_q = create_felem () in let tmp_x = create_felem () in QA.store_qelem r_bytes r; load_felem r_fe r_bytes; let h1 = ST.get () in //assert (inv_fully_reduced h1 r_fe); //assert (as_nat h1 r_fe == qas_nat h1 r); let h2 = ST.get () in fnormalize tmp_x x; let h3 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x); //assert (inv_fully_reduced h3 tmp_x); //assert (inv_lazy_reduced2 h3 z); let is_rz_x = fmul_eq_vartime r_fe z tmp_x in //assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x)); let res : bool = if not is_rz_x then begin let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in if is_r_lt_p_m_q then begin assert (as_nat h1 r_fe < S.prime - S.q); make_u52_5 tmp_q (make_order_k256 ()); let h4 = ST.get () in BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q); fadd tmp_q r_fe tmp_q; fmul_eq_vartime tmp_q z tmp_x end //assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x)); else false end else true in pop_frame (); KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r); assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r)); let h5 = ST.get () in assert (modifies0 h0 h5); res inline_for_extraction noextract val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_g_double_split_lambda_vartime res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (point_eval h1 res) == S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk))); KL.lemma_aff_is_point_at_inf (point_eval h1 res); KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk)); let b = if is_proj_point_at_inf_vartime res then false else ecdsa_verify_avoid_finv res r in pop_frame (); b inline_for_extraction noextract val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q))) let load_signature r_q s_q signature = let is_r_valid = QA.load_qelem_vartime r_q (sub signature 0ul 32ul) in let is_s_valid = QA.load_qelem_vartime s_q (sub signature 32ul 32ul) in is_r_valid && is_s_valid inline_for_extraction noextract val ecdsa_verify_hashed_msg (msgHash:lbytes 32ul) (public_key signature:lbytes 64ul) : Stack bool (requires fun h -> live h msgHash /\ live h public_key /\ live h signature) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == S.ecdsa_verify_hashed_msg (as_seq h0 msgHash) (as_seq h0 public_key) (as_seq h0 signature))
false
false
Hacl.Impl.K256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_hashed_msg (msgHash:lbytes 32ul) (public_key signature:lbytes 64ul) : Stack bool (requires fun h -> live h msgHash /\ live h public_key /\ live h signature) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == S.ecdsa_verify_hashed_msg (as_seq h0 msgHash) (as_seq h0 public_key) (as_seq h0 signature))
[]
Hacl.Impl.K256.Verify.ecdsa_verify_hashed_msg
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
msgHash: Hacl.Impl.K256.Verify.lbytes 32ul -> public_key: Hacl.Impl.K256.Verify.lbytes 64ul -> signature: Hacl.Impl.K256.Verify.lbytes 64ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 214, "start_col": 2, "start_line": 195 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Math.Poly2_s", "short_module": "P" }, { "abbrev": true, "full_module": "Spec.GaloisField", "short_module": "G" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "I" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul (#f:G.field) (a b:G.felem f) = G.fmul #f a b
let fmul (#f: G.field) (a b: G.felem f) =
false
null
false
G.fmul #f a b
{ "checked_file": "Vale.Math.Poly2.Galois.Lemmas.fsti.checked", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Galois.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Galois.Lemmas.fsti" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fmul" ]
[]
module Vale.Math.Poly2.Galois.Lemmas open FStar.Mul module I = Lib.IntTypes module G = Spec.GaloisField module P = Vale.Math.Poly2_s open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Galois
false
false
Vale.Math.Poly2.Galois.Lemmas.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul : a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
[]
Vale.Math.Poly2.Galois.Lemmas.fmul
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.Lemmas.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 60, "end_line": 11, "start_col": 47, "start_line": 11 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Math.Poly2_s", "short_module": "P" }, { "abbrev": true, "full_module": "Spec.GaloisField", "short_module": "G" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "I" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fadd (#f:G.field) (a b:G.felem f) = G.fadd #f a b
let fadd (#f: G.field) (a b: G.felem f) =
false
null
false
G.fadd #f a b
{ "checked_file": "Vale.Math.Poly2.Galois.Lemmas.fsti.checked", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Galois.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Galois.Lemmas.fsti" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fadd" ]
[]
module Vale.Math.Poly2.Galois.Lemmas open FStar.Mul module I = Lib.IntTypes module G = Spec.GaloisField module P = Vale.Math.Poly2_s open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Galois
false
false
Vale.Math.Poly2.Galois.Lemmas.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fadd : a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
[]
Vale.Math.Poly2.Galois.Lemmas.fadd
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.Lemmas.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 60, "end_line": 10, "start_col": 47, "start_line": 10 }
Prims.Pure
val incr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a < max_int n))) (ensures (fun b -> a + 1 = b))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let incr_underspec #n a = if a < max_int n then a + 1 else 0
val incr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a < max_int n))) (ensures (fun b -> a + 1 = b)) let incr_underspec #n a =
false
null
false
if a < max_int n then a + 1 else 0
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.op_LessThan", "FStar.Int.max_int", "Prims.op_Addition", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> ()
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val incr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a < max_int n))) (ensures (fun b -> a + 1 = b))
[]
FStar.Int.incr_underspec
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
{ "end_col": 36, "end_line": 38, "start_col": 2, "start_line": 38 }
FStar.Pervasives.Lemma
val logand_pos_le: #n:pos{1 < n} -> a:int_t n{0 <= a} -> b:int_t n{0 <= b} -> Lemma (0 <= logand a b /\ logand a b <= a /\ logand a b <= b)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b)
val logand_pos_le: #n:pos{1 < n} -> a:int_t n{0 <= a} -> b:int_t n{0 <= b} -> Lemma (0 <= logand a b /\ logand a b <= a /\ logand a b <= b) let logand_pos_le #n a b =
false
null
true
UInt.logand_le (to_uint a) (to_uint b)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "Prims.op_LessThanOrEqual", "FStar.UInt.logand_le", "FStar.Int.to_uint", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_pos_le: #n:pos{1 < n} -> a:int_t n{0 <= a} -> b:int_t n{0 <= b} -> Lemma (0 <= logand a b /\ logand a b <= a /\ logand a b <= b)
[]
FStar.Int.logand_pos_le
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n {0 <= a} -> b: FStar.Int.int_t n {0 <= b} -> FStar.Pervasives.Lemma (ensures 0 <= FStar.Int.logand a b /\ FStar.Int.logand a b <= a /\ FStar.Int.logand a b <= b)
{ "end_col": 40, "end_line": 143, "start_col": 2, "start_line": 143 }
Prims.Pure
val decr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a > min_int n))) (ensures (fun b -> a - 1 = b))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decr_underspec #n a = if a > min_int n then a - 1 else 0
val decr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a > min_int n))) (ensures (fun b -> a - 1 = b)) let decr_underspec #n a =
false
null
false
if a > min_int n then a - 1 else 0
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.op_GreaterThan", "FStar.Int.min_int", "Prims.op_Subtraction", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a > min_int n))) (ensures (fun b -> a - 1 = b))
[]
FStar.Int.decr_underspec
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
{ "end_col": 36, "end_line": 41, "start_col": 2, "start_line": 41 }
Prims.Pure
val mul_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a * b) n ==> a * b = c))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_underspec #n a b = if fits (a*b) n then a * b else 0
val mul_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a * b) n ==> a * b = c)) let mul_underspec #n a b =
false
null
false
if fits (a * b) n then a * b else 0
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.fits", "FStar.Mul.op_Star", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a * b) n ==> a * b = c))
[]
FStar.Int.mul_underspec
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
{ "end_col": 35, "end_line": 50, "start_col": 2, "start_line": 50 }
Prims.Pure
val add_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a + b) n ==> a + b = c))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_underspec #n a b = if fits (a+b) n then a + b else 0
val add_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a + b) n ==> a + b = c)) let add_underspec #n a b =
false
null
false
if fits (a + b) n then a + b else 0
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.fits", "Prims.op_Addition", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a + b) n ==> a + b = c))
[]
FStar.Int.add_underspec
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
{ "end_col": 35, "end_line": 44, "start_col": 2, "start_line": 44 }
FStar.Pervasives.Lemma
val pow2_values: x:nat -> Lemma (let p = pow2 x in match x with | 0 -> p=1 | 1 -> p=2 | 8 -> p=256 | 16 -> p=65536 | 31 -> p=2147483648 | 32 -> p=4294967296 | 63 -> p=9223372036854775808 | 64 -> p=18446744073709551616 | _ -> True) [SMTPat (pow2 x)]
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> ()
val pow2_values: x:nat -> Lemma (let p = pow2 x in match x with | 0 -> p=1 | 1 -> p=2 | 8 -> p=256 | 16 -> p=65536 | 31 -> p=2147483648 | 32 -> p=4294967296 | 63 -> p=9223372036854775808 | 64 -> p=18446744073709551616 | _ -> True) [SMTPat (pow2 x)] let pow2_values x =
false
null
true
match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> ()
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_values: x:nat -> Lemma (let p = pow2 x in match x with | 0 -> p=1 | 1 -> p=2 | 8 -> p=256 | 16 -> p=65536 | 31 -> p=2147483648 | 32 -> p=4294967296 | 63 -> p=9223372036854775808 | 64 -> p=18446744073709551616 | _ -> True) [SMTPat (pow2 x)]
[]
FStar.Int.pow2_values
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.nat -> FStar.Pervasives.Lemma (ensures (let p = Prims.pow2 x in (match x with | 0 -> p = 1 | 1 -> p = 2 | 8 -> p = 256 | 16 -> p = 65536 | 31 -> p = 2147483648 | 32 -> p = 4294967296 | 63 -> p = 9223372036854775808 | 64 -> p = 18446744073709551616 | _ -> Prims.l_True) <: Type0)) [SMTPat (Prims.pow2 x)]
{ "end_col": 13, "end_line": 35, "start_col": 3, "start_line": 26 }
FStar.Pervasives.Lemma
val lognot_negative: #n:pos -> a:int_t n -> Lemma (requires a < 0) (ensures lognot a == UInt.lognot #n (a + pow2 n))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot_negative #n a = assert_norm (pow2 n = 2 * pow2 (n - 1)); UInt.lemma_lognot_value_mod #n (a + pow2 n)
val lognot_negative: #n:pos -> a:int_t n -> Lemma (requires a < 0) (ensures lognot a == UInt.lognot #n (a + pow2 n)) let lognot_negative #n a =
false
null
true
assert_norm (pow2 n = 2 * pow2 (n - 1)); UInt.lemma_lognot_value_mod #n (a + pow2 n)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.lemma_lognot_value_mod", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Subtraction" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b) let logxor_neq_nonzero #n a b = UInt.logxor_neq_nonzero (to_uint a) (to_uint b)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot_negative: #n:pos -> a:int_t n -> Lemma (requires a < 0) (ensures lognot a == UInt.lognot #n (a + pow2 n))
[]
FStar.Int.lognot_negative
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (requires a < 0) (ensures FStar.Int.lognot a == FStar.UInt.lognot (a + Prims.pow2 n))
{ "end_col": 45, "end_line": 173, "start_col": 2, "start_line": 172 }
FStar.Pervasives.Lemma
val logand_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a)
val logand_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a)) let logand_commutative #n a b =
false
null
true
nth_lemma #n (logand #n a b) (logand #n b a)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = ()
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a))
[]
FStar.Int.logand_commutative
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a b = FStar.Int.logand b a)
{ "end_col": 76, "end_line": 123, "start_col": 32, "start_line": 123 }
FStar.Pervasives.Lemma
val from_vec_lemma_2: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires from_vec a = from_vec b) (ensures equal a b)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b
val from_vec_lemma_2: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires from_vec a = from_vec b) (ensures equal a b) let from_vec_lemma_2 #n a b =
false
null
true
inverse_vec_lemma a; inverse_vec_lemma b
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.Int.inverse_vec_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = ()
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_vec_lemma_2: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires from_vec a = from_vec b) (ensures equal a b)
[]
FStar.Int.from_vec_lemma_2
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.BitVector.bv_t n -> b: FStar.BitVector.bv_t n -> FStar.Pervasives.Lemma (requires FStar.Int.from_vec a = FStar.Int.from_vec b) (ensures FStar.Seq.Base.equal a b)
{ "end_col": 70, "end_line": 80, "start_col": 30, "start_line": 80 }
FStar.Pervasives.Lemma
val logand_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (logand #n (logand #n a b) c = logand #n a (logand #n b c))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
val logand_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (logand #n (logand #n a b) c = logand #n a (logand #n b c)) let logand_associative #n a b c =
false
null
true
nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (logand #n (logand #n a b) c = logand #n a (logand #n b c))
[]
FStar.Int.logand_associative
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> c: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand (FStar.Int.logand a b) c = FStar.Int.logand a (FStar.Int.logand b c))
{ "end_col": 74, "end_line": 126, "start_col": 2, "start_line": 126 }
Prims.Pure
val div_underspec: #n:pos -> a:int_t n -> b:int_t n{b <> 0} -> Pure (int_t n) (requires True) (ensures (fun c -> (b <> 0 /\ size (a / b) n) ==> a / b = c))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_underspec #n a b = if fits (a / b) n then a / b else 0
val div_underspec: #n:pos -> a:int_t n -> b:int_t n{b <> 0} -> Pure (int_t n) (requires True) (ensures (fun c -> (b <> 0 /\ size (a / b) n) ==> a / b = c)) let div_underspec #n a b =
false
null
false
if fits (a / b) n then a / b else 0
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Int.fits", "FStar.Int.op_Slash", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_underspec: #n:pos -> a:int_t n -> b:int_t n{b <> 0} -> Pure (int_t n) (requires True) (ensures (fun c -> (b <> 0 /\ size (a / b) n) ==> a / b = c))
[]
FStar.Int.div_underspec
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n {b <> 0} -> Prims.Pure (FStar.Int.int_t n)
{ "end_col": 37, "end_line": 53, "start_col": 2, "start_line": 53 }
FStar.Pervasives.Lemma
val to_vec_lemma_2: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires equal (to_vec a) (to_vec b)) (ensures a = b)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b)
val to_vec_lemma_2: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires equal (to_vec a) (to_vec b)) (ensures a = b) let to_vec_lemma_2 #n a b =
false
null
true
UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.to_vec_lemma_2", "FStar.Int.to_uint", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = ()
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_vec_lemma_2: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires equal (to_vec a) (to_vec b)) (ensures a = b)
[]
FStar.Int.to_vec_lemma_2
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Int.to_vec a) (FStar.Int.to_vec b)) (ensures a = b)
{ "end_col": 48, "end_line": 65, "start_col": 2, "start_line": 65 }
FStar.Pervasives.Lemma
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))] let ones_from_vec_lemma #n =
false
null
true
to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.to_vec_lemma_2", "FStar.Int.from_vec", "FStar.BitVector.ones_vec", "FStar.Int.ones", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = ()
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))]
[]
FStar.Int.ones_from_vec_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Pervasives.Lemma (ensures FStar.Int.from_vec FStar.BitVector.ones_vec = FStar.Int.ones n) [SMTPat (FStar.Int.from_vec FStar.BitVector.ones_vec)]
{ "end_col": 50, "end_line": 103, "start_col": 2, "start_line": 103 }
FStar.Pervasives.Lemma
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))] let zero_from_vec_lemma #n =
false
null
true
to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.to_vec_lemma_2", "FStar.Int.from_vec", "FStar.BitVector.zero_vec", "FStar.Int.zero", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))]
[]
FStar.Int.zero_from_vec_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Pervasives.Lemma (ensures FStar.Int.from_vec FStar.BitVector.zero_vec = FStar.Int.zero n) [SMTPat (FStar.Int.from_vec FStar.BitVector.zero_vec)]
{ "end_col": 77, "end_line": 85, "start_col": 29, "start_line": 85 }
FStar.Pervasives.Lemma
val pow2_from_vec_lemma: #n:pos -> p:pos{p < n-1} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
val pow2_from_vec_lemma: #n:pos -> p:pos{p < n-1} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))] let pow2_from_vec_lemma #n p =
false
null
true
to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Int.to_vec_lemma_2", "FStar.Int.from_vec", "FStar.BitVector.elem_vec", "FStar.Int.pow2_n", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_from_vec_lemma: #n:pos -> p:pos{p < n-1} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))]
[]
FStar.Int.pow2_from_vec_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: Prims.pos{p < n - 1} -> FStar.Pervasives.Lemma (ensures FStar.Int.from_vec (FStar.BitVector.elem_vec p) = FStar.Int.pow2_n (n - p - 1)) [SMTPat (FStar.Int.from_vec (FStar.BitVector.elem_vec p))]
{ "end_col": 67, "end_line": 98, "start_col": 2, "start_line": 98 }
FStar.Pervasives.Lemma
val logand_self: #n:pos -> a:int_t n -> Lemma (logand #n a a = a)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_self #n a = nth_lemma #n (logand #n a a) a
val logand_self: #n:pos -> a:int_t n -> Lemma (logand #n a a = a) let logand_self #n a =
false
null
true
nth_lemma #n (logand #n a a) a
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_self: #n:pos -> a:int_t n -> Lemma (logand #n a a = a)
[]
FStar.Int.logand_self
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a a = a)
{ "end_col": 53, "end_line": 128, "start_col": 23, "start_line": 128 }
FStar.Pervasives.Lemma
val nth_lemma: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b
val nth_lemma: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b) let nth_lemma #n a b =
false
null
true
assert (forall (i: nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.to_vec_lemma_2", "Prims.unit", "Prims._assert", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.bool", "FStar.Seq.Base.index", "FStar.Int.to_vec" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nth_lemma: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b)
[]
FStar.Int.nth_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{i < n}). FStar.Int.nth a i = FStar.Int.nth b i) (ensures a = b)
{ "end_col": 20, "end_line": 107, "start_col": 2, "start_line": 106 }
FStar.Pervasives.Lemma
val logxor_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a
val logxor_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a)) let logxor_lemma_1 #n a =
false
null
true
nth_lemma #n (logxor #n a (zero n)) a
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "FStar.Int.zero", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a))
[]
FStar.Int.logxor_lemma_1
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a (FStar.Int.zero n) = a)
{ "end_col": 63, "end_line": 161, "start_col": 26, "start_line": 161 }
FStar.Pervasives.Lemma
val logand_pow2_minus_one: #n:pos{1 < n} -> a:int_t n -> m:pos{m < n} -> Lemma (0 <= logand a (pow2_minus_one m) /\ logand a (pow2_minus_one m) <= pow2_minus_one #n m)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m))
val logand_pow2_minus_one: #n:pos{1 < n} -> a:int_t n -> m:pos{m < n} -> Lemma (0 <= logand a (pow2_minus_one m) /\ logand a (pow2_minus_one m) <= pow2_minus_one #n m) let logand_pow2_minus_one #n a m =
false
null
true
UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m))
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "FStar.UInt.logand_le", "FStar.Int.to_uint", "FStar.Int.pow2_minus_one", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_pow2_minus_one: #n:pos{1 < n} -> a:int_t n -> m:pos{m < n} -> Lemma (0 <= logand a (pow2_minus_one m) /\ logand a (pow2_minus_one m) <= pow2_minus_one #n m)
[]
FStar.Int.logand_pow2_minus_one
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> m: Prims.pos{m < n} -> FStar.Pervasives.Lemma (ensures 0 <= FStar.Int.logand a (FStar.Int.pow2_minus_one m) /\ FStar.Int.logand a (FStar.Int.pow2_minus_one m) <= FStar.Int.pow2_minus_one m)
{ "end_col": 60, "end_line": 146, "start_col": 2, "start_line": 146 }
FStar.Pervasives.Lemma
val logxor_self: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n)
val logxor_self: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n)) let logxor_self #n a =
false
null
true
nth_lemma #n (logxor #n a a) (zero n)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "FStar.Int.zero", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_self: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n))
[]
FStar.Int.logxor_self
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a a = FStar.Int.zero n)
{ "end_col": 60, "end_line": 159, "start_col": 23, "start_line": 159 }
FStar.Pervasives.Lemma
val logxor_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c)))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
val logxor_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c))) let logxor_associative #n a b c =
false
null
true
nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c)))
[]
FStar.Int.logxor_associative
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> c: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor (FStar.Int.logxor a b) c = FStar.Int.logxor a (FStar.Int.logxor b c))
{ "end_col": 106, "end_line": 157, "start_col": 34, "start_line": 157 }
FStar.Pervasives.Lemma
val logxor_inv: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a = logxor #n (logxor #n a b) b)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b)
val logxor_inv: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a = logxor #n (logxor #n a b) b) let logxor_inv #n a b =
false
null
true
UInt.logxor_inv (to_uint a) (to_uint b)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.logxor_inv", "FStar.Int.to_uint", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_inv: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a = logxor #n (logxor #n a b) b)
[]
FStar.Int.logxor_inv
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures a = FStar.Int.logxor (FStar.Int.logxor a b) b)
{ "end_col": 41, "end_line": 166, "start_col": 2, "start_line": 166 }
FStar.Pervasives.Lemma
val logand_lemma_2: #n:pos -> a:int_t n -> Lemma (logand #n a (ones n) = a)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a
val logand_lemma_2: #n:pos -> a:int_t n -> Lemma (logand #n a (ones n) = a) let logand_lemma_2 #n a =
false
null
true
nth_lemma #n (logand #n a (ones n)) a
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "FStar.Int.ones", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_lemma_2: #n:pos -> a:int_t n -> Lemma (logand #n a (ones n) = a)
[]
FStar.Int.logand_lemma_2
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a (FStar.Int.ones n) = a)
{ "end_col": 39, "end_line": 134, "start_col": 2, "start_line": 134 }
FStar.Pervasives.Lemma
val div_size: #n:pos -> a:int_t n{min_int n < a} -> b:int_t n{b <> 0} -> Lemma (requires (size a n)) (ensures (size (a / b) n))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b)
val div_size: #n:pos -> a:int_t n{min_int n < a} -> b:int_t n{b <> 0} -> Lemma (requires (size a n)) (ensures (size (a / b) n)) let div_size #n a b =
false
null
true
FStar.Math.Lib.slash_decr_axiom (abs a) (abs b)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.min_int", "Prims.op_disEquality", "Prims.int", "FStar.Math.Lib.slash_decr_axiom", "Prims.abs", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_size: #n:pos -> a:int_t n{min_int n < a} -> b:int_t n{b <> 0} -> Lemma (requires (size a n)) (ensures (size (a / b) n))
[]
FStar.Int.div_size
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n {FStar.Int.min_int n < a} -> b: FStar.Int.int_t n {b <> 0} -> FStar.Pervasives.Lemma (requires FStar.Int.size a n) (ensures FStar.Int.size (a / b) n)
{ "end_col": 49, "end_line": 56, "start_col": 2, "start_line": 56 }
FStar.Pervasives.Lemma
val logxor_lemma_2: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
val logxor_lemma_2: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a)) let logxor_lemma_2 #n a =
false
null
true
nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "FStar.Int.ones", "FStar.Int.lognot", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_lemma_2: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a))
[]
FStar.Int.logxor_lemma_2
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a (FStar.Int.ones n) = FStar.Int.lognot a)
{ "end_col": 75, "end_line": 163, "start_col": 26, "start_line": 163 }
FStar.Pervasives.Lemma
val logxor_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a)
val logxor_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a)) let logxor_commutative #n a b =
false
null
true
nth_lemma #n (logxor #n a b) (logxor #n b a)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a))
[]
FStar.Int.logxor_commutative
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a b = FStar.Int.logxor b a)
{ "end_col": 76, "end_line": 155, "start_col": 32, "start_line": 155 }
FStar.Pervasives.Lemma
val logxor_neq_nonzero: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a <> b ==> logxor a b <> 0)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_neq_nonzero #n a b = UInt.logxor_neq_nonzero (to_uint a) (to_uint b)
val logxor_neq_nonzero: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a <> b ==> logxor a b <> 0) let logxor_neq_nonzero #n a b =
false
null
true
UInt.logxor_neq_nonzero (to_uint a) (to_uint b)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.logxor_neq_nonzero", "FStar.Int.to_uint", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_neq_nonzero: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a <> b ==> logxor a b <> 0)
[]
FStar.Int.logxor_neq_nonzero
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures a <> b ==> FStar.Int.logxor a b <> 0)
{ "end_col": 49, "end_line": 169, "start_col": 2, "start_line": 169 }
FStar.Pervasives.Lemma
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)] let rec zero_to_vec_lemma #n i =
false
null
true
if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.Int.zero_to_vec_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)]
[ "recursion" ]
FStar.Int.zero_to_vec_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.zero n)) i = FStar.Seq.Base.index FStar.BitVector.zero_vec i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.zero n)) i)]
{ "end_col": 56, "end_line": 83, "start_col": 2, "start_line": 83 }
FStar.Pervasives.Lemma
val shift_left_value_lemma: #n:pos -> a:int_t n{0 <= a} -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) @% pow2 n) [SMTPat (shift_left #n a s)]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_left_value_lemma #n a s = UInt.shift_left_value_lemma #n a s
val shift_left_value_lemma: #n:pos -> a:int_t n{0 <= a} -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) @% pow2 n) [SMTPat (shift_left #n a s)] let shift_left_value_lemma #n a s =
false
null
true
UInt.shift_left_value_lemma #n a s
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.nat", "FStar.UInt.shift_left_value_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b) let logxor_neq_nonzero #n a b = UInt.logxor_neq_nonzero (to_uint a) (to_uint b) let lognot_negative #n a = assert_norm (pow2 n = 2 * pow2 (n - 1)); UInt.lemma_lognot_value_mod #n (a + pow2 n) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = ()
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_left_value_lemma: #n:pos -> a:int_t n{0 <= a} -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) @% pow2 n) [SMTPat (shift_left #n a s)]
[]
FStar.Int.shift_left_value_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n {0 <= a} -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Int.shift_left a s = a * Prims.pow2 s @% Prims.pow2 n) [SMTPat (FStar.Int.shift_left a s)]
{ "end_col": 36, "end_line": 180, "start_col": 2, "start_line": 180 }
FStar.Pervasives.Lemma
val one_to_vec_lemma: #n:pos{1 < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i
val one_to_vec_lemma: #n:pos{1 < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)] let one_to_vec_lemma #n i =
false
null
true
if i = n - 1 then () else zero_to_vec_lemma #n i
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.Int.zero_to_vec_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one_to_vec_lemma: #n:pos{1 < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)]
[]
FStar.Int.one_to_vec_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.one n)) i = FStar.Seq.Base.index (FStar.BitVector.elem_vec (n - 1)) i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.one n)) i)]
{ "end_col": 50, "end_line": 88, "start_col": 2, "start_line": 88 }
FStar.Pervasives.Lemma
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n-1} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n-1} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)] let rec pow2_to_vec_lemma #n p i =
false
null
true
if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Int.one_to_vec_lemma", "FStar.Int.pow2_to_vec_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native"
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n-1} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)]
[ "recursion" ]
FStar.Int.pow2_to_vec_lemma
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: Prims.nat{p < n - 1} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.pow2_n p)) i = FStar.Seq.Base.index (FStar.BitVector.elem_vec (n - p - 1)) i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.pow2_n p)) i)]
{ "end_col": 43, "end_line": 94, "start_col": 2, "start_line": 92 }
FStar.Pervasives.Lemma
val sign_bit_negative: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = true <==> a < 0)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1
val sign_bit_negative: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = true <==> a < 0) let sign_bit_negative #n a =
false
null
true
UInt.from_vec_propriety #n (to_vec a) 1
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "FStar.UInt.from_vec_propriety", "FStar.Int.to_vec", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sign_bit_negative: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = true <==> a < 0)
[]
FStar.Int.sign_bit_negative
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.nth a 0 = true <==> a < 0)
{ "end_col": 41, "end_line": 137, "start_col": 2, "start_line": 137 }
FStar.Pervasives.Lemma
val sign_bit_positive: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = false <==> 0 <= a)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1
val sign_bit_positive: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = false <==> 0 <= a) let sign_bit_positive #n a =
false
null
true
UInt.from_vec_propriety #n (to_vec a) 1
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "FStar.UInt.from_vec_propriety", "FStar.Int.to_vec", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sign_bit_positive: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = false <==> 0 <= a)
[]
FStar.Int.sign_bit_positive
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.nth a 0 = false <==> 0 <= a)
{ "end_col": 41, "end_line": 140, "start_col": 2, "start_line": 140 }
Prims.Pure
val sub_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a - b) n ==> a - b = c))
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_underspec #n a b = if fits (a-b) n then a - b else 0
val sub_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a - b) n ==> a - b = c)) let sub_underspec #n a b =
false
null
false
if fits (a - b) n then a - b else 0
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.fits", "Prims.op_Subtraction", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a - b) n ==> a - b = c))
[]
FStar.Int.sub_underspec
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
{ "end_col": 35, "end_line": 47, "start_col": 2, "start_line": 47 }
FStar.Pervasives.Lemma
val logand_max: #n:pos{1 < n} -> a:int_t n{0 <= a} -> Lemma (0 <= logand a (max_int n) /\ a = logand a (max_int n))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n))
val logand_max: #n:pos{1 < n} -> a:int_t n{0 <= a} -> Lemma (0 <= logand a (max_int n) /\ a = logand a (max_int n)) let logand_max #n a =
false
null
true
sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n))
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "Prims.op_LessThanOrEqual", "FStar.Int.nth_lemma", "FStar.Int.logand", "FStar.Int.max_int", "Prims.unit", "FStar.Int.sign_bit_positive" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2"
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_max: #n:pos{1 < n} -> a:int_t n{0 <= a} -> Lemma (0 <= logand a (max_int n) /\ a = logand a (max_int n))
[]
FStar.Int.logand_max
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n {0 <= a} -> FStar.Pervasives.Lemma (ensures 0 <= FStar.Int.logand a (FStar.Int.max_int n) /\ a = FStar.Int.logand a (FStar.Int.max_int n))
{ "end_col": 36, "end_line": 152, "start_col": 2, "start_line": 150 }
FStar.Pervasives.Lemma
val logand_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n))
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n)
val logand_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n)) let logand_lemma_1 #n a =
false
null
true
nth_lemma #n (logand #n a (zero n)) (zero n)
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "FStar.Int.zero", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n))
[]
FStar.Int.logand_lemma_1
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a (FStar.Int.zero n) = FStar.Int.zero n)
{ "end_col": 46, "end_line": 131, "start_col": 2, "start_line": 131 }
FStar.Pervasives.Lemma
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)]
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)] let rec inverse_aux #n vec i =
false
null
true
if i = n - 1 then assert ((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i
{ "checked_file": "FStar.Int.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.BitVector.bv_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims._assert", "Prims.op_Modulus", "FStar.Int.from_vec", "FStar.Seq.Base.index", "Prims.bool", "FStar.Int.inverse_aux", "FStar.Seq.Base.slice", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1"
false
false
FStar.Int.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)]
[ "recursion" ]
FStar.Int.inverse_aux
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
vec: FStar.BitVector.bv_t n -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index vec i = FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.from_vec vec)) i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.from_vec vec)) i)]
{ "end_col": 51, "end_line": 71, "start_col": 2, "start_line": 69 }
FStar.Tactics.Effect.Tac
val implies_intro: Prims.unit -> Tac binding
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro ()
val implies_intro: Prims.unit -> Tac binding let implies_intro () : Tac binding =
true
null
false
apply_lemma (`imp_intro_lem); intro ()
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Builtins.intro", "FStar.Reflection.V2.Data.binding", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Tactics.NamedView.binding" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *)
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val implies_intro: Prims.unit -> Tac binding
[]
FStar.Tactics.V2.Logic.implies_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 12, "end_line": 81, "start_col": 4, "start_line": 80 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t)
let l_exact (t: term) =
true
null
false
try exact t with | _ -> (squash_intro (); exact t)
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.try_with", "Prims.unit", "FStar.Tactics.V2.Derived.exact", "Prims.exn", "FStar.Tactics.V2.Logic.squash_intro" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash)
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_exact : t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V2.Logic.l_exact
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 37, "end_line": 101, "start_col": 4, "start_line": 100 }
FStar.Tactics.Effect.Tac
val l_revert: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_revert () : Tac unit = revert (); apply (`revert_squash)
val l_revert: Prims.unit -> Tac unit let l_revert () : Tac unit =
true
null
false
revert (); apply (`revert_squash)
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply", "FStar.Tactics.V2.Builtins.revert" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *)
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_revert: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Logic.l_revert
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 26, "end_line": 38, "start_col": 4, "start_line": 37 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_intros () = repeat l_intro
let l_intros () =
true
null
false
repeat l_intro
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.l_intro", "Prims.list" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_intros : _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
[]
FStar.Tactics.V2.Logic.l_intros
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
{ "end_col": 32, "end_line": 94, "start_col": 18, "start_line": 94 }
FStar.Tactics.Effect.Tac
val cur_formula: Prims.unit -> Tac formula
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
val cur_formula: Prims.unit -> Tac formula let cur_formula () : Tac formula =
true
null
false
term_as_formula (cur_goal ())
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Reflection.Types.typ" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_formula: Prims.unit -> Tac formula
[]
FStar.Tactics.V2.Logic.cur_formula
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Reflection.V2.Formula.formula
{ "end_col": 64, "end_line": 28, "start_col": 35, "start_line": 28 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_intro () = forall_intro `or_else` implies_intro
let l_intro () =
true
null
false
forall_intro `or_else` implies_intro
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.or_else", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.forall_intro", "FStar.Tactics.V2.Logic.implies_intro" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_intro : _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
[]
FStar.Tactics.V2.Logic.l_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 53, "end_line": 91, "start_col": 17, "start_line": 91 }
FStar.Tactics.Effect.Tac
val forall_intros: Prims.unit -> Tac (list binding)
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let forall_intros () : Tac (list binding) = repeat1 forall_intro
val forall_intros: Prims.unit -> Tac (list binding) let forall_intros () : Tac (list binding) =
true
null
false
repeat1 forall_intro
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat1", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.forall_intro", "Prims.list" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val forall_intros: Prims.unit -> Tac (list binding)
[]
FStar.Tactics.V2.Logic.forall_intros
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
{ "end_col": 64, "end_line": 61, "start_col": 44, "start_line": 61 }
FStar.Pervasives.Lemma
val fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x)
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
val fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x) let fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x) =
false
null
true
FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x: a -> GTot (p x)))
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ "lemma" ]
[ "Prims.squash", "FStar.Classical.lemma_forall_intro_gtot", "FStar.IndefiniteDescription.elim_squash", "Prims.unit", "Prims.l_True", "Prims.l_Forall", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x)
[]
FStar.Tactics.V2.Logic.fa_intro_lem
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (x: a -> Prims.squash (p x)) -> FStar.Pervasives.Lemma (ensures forall (x: a). p x)
{ "end_col": 85, "end_line": 48, "start_col": 2, "start_line": 47 }
FStar.Tactics.Effect.Tac
val implies_intro_as (s: string) : Tac binding
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s
val implies_intro_as (s: string) : Tac binding let implies_intro_as (s: string) : Tac binding =
true
null
false
apply_lemma (`imp_intro_lem); intro_as s
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.intro_as", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro ()
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val implies_intro_as (s: string) : Tac binding
[]
FStar.Tactics.V2.Logic.implies_intro_as
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 14, "end_line": 85, "start_col": 4, "start_line": 84 }
FStar.Tactics.Effect.Tac
val destruct_and (t: term) : Tac (binding * binding)
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ())
val destruct_and (t: term) : Tac (binding * binding) let destruct_and (t: term) : Tac (binding * binding) =
true
null
false
and_elim t; (implies_intro (), implies_intro ())
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.NamedView.binding", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Logic.implies_intro", "Prims.unit", "FStar.Tactics.V2.Logic.and_elim" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val destruct_and (t: term) : Tac (binding * binding)
[]
FStar.Tactics.V2.Logic.destruct_and
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding)
{ "end_col": 40, "end_line": 263, "start_col": 4, "start_line": 262 }
FStar.Tactics.Effect.Tac
val witness (t: term) : Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let witness (t : term) : Tac unit = apply_raw (`__witness); exact t
val witness (t: term) : Tac unit let witness (t: term) : Tac unit =
true
null
false
apply_raw (`__witness); exact t
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.exact", "Prims.unit", "FStar.Tactics.V2.Derived.apply_raw" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = ()
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val witness (t: term) : Tac unit
[]
FStar.Tactics.V2.Logic.witness
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 11, "end_line": 270, "start_col": 4, "start_line": 269 }
FStar.Tactics.Effect.Tac
val split: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal"
val split: Prims.unit -> Tac unit let split () : Tac unit =
true
null
false
try apply_lemma (`split_lem) with | _ -> fail "Could not split goal"
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.try_with", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.exn", "FStar.Tactics.V2.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *)
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val split: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Logic.split
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 43, "end_line": 70, "start_col": 4, "start_line": 69 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sk_binder b = sk_binder' [] b
let sk_binder b =
true
null
false
sk_binder' [] b
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.sk_binder'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "Prims.list" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = () let witness (t : term) : Tac unit = apply_raw (`__witness); exact t private let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) (k : (x:t -> pred x -> squash goal)) : squash goal = FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) (* returns witness and proof as binders *) let elim_exists (t : term) : Tac (binding & binding) = apply_lemma (`(__elim_exists' (`#(t)))); let x = intro () in let pf = intro () in (x, pf) private let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) = () (* GM: annoying that this doesn't just work by SMT *) private let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) = FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) let instantiate (fa : term) (x : term) : Tac binding = try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" let instantiate_as (fa : term) (x : term) (s : string) : Tac binding = let b = instantiate fa x in rename_to b s private let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) : Lemma (requires (forall x. p x ==> phi)) (ensures phi) = () private let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) = focus (fun () -> try apply_lemma (`(sklem0 (`#b))); if ngoals () <> 1 then fail "no"; clear b; let bx = forall_intro () in let b' = implies_intro () in sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *) with | _ -> (acc, b) (* If the above failed, just return *) ) (* Skolemizes a given binder for an existential, returning the introduced new binders
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sk_binder : b: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding)
[]
FStar.Tactics.V2.Logic.sk_binder
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding)
{ "end_col": 33, "end_line": 322, "start_col": 18, "start_line": 322 }
FStar.Tactics.Effect.Tac
val implies_intros: Prims.unit -> Tac (list binding)
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let implies_intros () : Tac (list binding) = repeat1 implies_intro
val implies_intros: Prims.unit -> Tac (list binding) let implies_intros () : Tac (list binding) =
true
null
false
repeat1 implies_intro
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat1", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro", "Prims.list" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val implies_intros: Prims.unit -> Tac (list binding)
[]
FStar.Tactics.V2.Logic.implies_intros
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
{ "end_col": 66, "end_line": 88, "start_col": 45, "start_line": 88 }
FStar.Tactics.Effect.Tac
val squash_intro: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash)
val squash_intro: Prims.unit -> Tac unit let squash_intro () : Tac unit =
true
null
false
apply (`FStar.Squash.return_squash)
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val squash_intro: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Logic.squash_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 39, "end_line": 97, "start_col": 4, "start_line": 97 }
FStar.Tactics.Effect.Tac
val rewrite_all_equalities: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication
val rewrite_all_equalities: Prims.unit -> Tac unit let rewrite_all_equalities () : Tac unit =
true
null
false
visit simplify_eq_implication
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Logic.visit", "FStar.Tactics.V2.Logic.simplify_eq_implication" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_all_equalities: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Logic.rewrite_all_equalities
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 33, "end_line": 170, "start_col": 4, "start_line": 170 }
Prims.Tot
val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t) : squash (pred x)
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) = FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t) : squash (pred x) let __forall_inst_sq #t (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t) : squash (pred x) =
false
null
true
FStar.Squash.bind_squash h (fun (f: (forall x. pred x)) -> __forall_inst f x)
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ "total" ]
[ "Prims.squash", "Prims.l_Forall", "FStar.Squash.bind_squash", "FStar.Tactics.V2.Logic.__forall_inst" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = () let witness (t : term) : Tac unit = apply_raw (`__witness); exact t private let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) (k : (x:t -> pred x -> squash goal)) : squash goal = FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) (* returns witness and proof as binders *) let elim_exists (t : term) : Tac (binding & binding) = apply_lemma (`(__elim_exists' (`#(t)))); let x = intro () in let pf = intro () in (x, pf) private let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) = () (* GM: annoying that this doesn't just work by SMT *) private
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t) : squash (pred x)
[]
FStar.Tactics.V2.Logic.__forall_inst_sq
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: Prims.squash (forall (x: t). pred x) -> x: t -> Prims.squash (pred x)
{ "end_col": 82, "end_line": 291, "start_col": 4, "start_line": 291 }
FStar.Tactics.Effect.Tac
val forall_intro_as (s: string) : Tac binding
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s
val forall_intro_as (s: string) : Tac binding let forall_intro_as (s: string) : Tac binding =
true
null
false
apply_lemma (`fa_intro_lem); intro_as s
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.intro_as", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *)
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val forall_intro_as (s: string) : Tac binding
[]
FStar.Tactics.V2.Logic.forall_intro_as
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
{ "end_col": 14, "end_line": 58, "start_col": 4, "start_line": 57 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let easy_fill () = let _ = repeat intro in (* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *) let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in smt ()
let easy_fill () =
true
null
false
let _ = repeat intro in let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in smt ()
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.smt", "FStar.Pervasives.Native.option", "FStar.Reflection.V2.Data.binding", "FStar.Tactics.V2.Derived.trytac", "FStar.Tactics.V2.Builtins.intro", "FStar.Tactics.V2.Derived.apply", "Prims.list", "FStar.Tactics.V2.Derived.repeat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = () let witness (t : term) : Tac unit = apply_raw (`__witness); exact t private let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) (k : (x:t -> pred x -> squash goal)) : squash goal = FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) (* returns witness and proof as binders *) let elim_exists (t : term) : Tac (binding & binding) = apply_lemma (`(__elim_exists' (`#(t)))); let x = intro () in let pf = intro () in (x, pf) private let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) = () (* GM: annoying that this doesn't just work by SMT *) private let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) = FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) let instantiate (fa : term) (x : term) : Tac binding = try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" let instantiate_as (fa : term) (x : term) (s : string) : Tac binding = let b = instantiate fa x in rename_to b s private let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) : Lemma (requires (forall x. p x ==> phi)) (ensures phi) = () private let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) = focus (fun () -> try apply_lemma (`(sklem0 (`#b))); if ngoals () <> 1 then fail "no"; clear b; let bx = forall_intro () in let b' = implies_intro () in sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *) with | _ -> (acc, b) (* If the above failed, just return *) ) (* Skolemizes a given binder for an existential, returning the introduced new binders * and the skolemized formula. *) let sk_binder b = sk_binder' [] b let skolem () = let bs = vars_of_env (cur_env ()) in map sk_binder bs private val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) private let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val easy_fill : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V2.Logic.easy_fill
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 10, "end_line": 338, "start_col": 18, "start_line": 334 }
FStar.Pervasives.Lemma
val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x))) : Lemma (forall (x: a). pre x ==> post x)
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lem1_fa #a #pre #post ($lem : (x:a -> Lemma (requires pre x) (ensures post x))) : Lemma (forall (x:a). pre x ==> post x) = let l' x : Lemma (pre x ==> post x) = Classical.move_requires lem x in Classical.forall_intro l'
val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x))) : Lemma (forall (x: a). pre x ==> post x) let lem1_fa #a #pre #post ($lem: (x: a -> Lemma (requires pre x) (ensures post x))) : Lemma (forall (x: a). pre x ==> post x) =
false
null
true
let l' x : Lemma (pre x ==> post x) = Classical.move_requires lem x in Classical.forall_intro l'
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ "lemma" ]
[ "Prims.unit", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Classical.forall_intro", "Prims.l_imp", "Prims.l_True", "FStar.Classical.move_requires", "Prims.l_Forall" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = () let witness (t : term) : Tac unit = apply_raw (`__witness); exact t private let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) (k : (x:t -> pred x -> squash goal)) : squash goal = FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) (* returns witness and proof as binders *) let elim_exists (t : term) : Tac (binding & binding) = apply_lemma (`(__elim_exists' (`#(t)))); let x = intro () in let pf = intro () in (x, pf) private let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) = () (* GM: annoying that this doesn't just work by SMT *) private let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) = FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) let instantiate (fa : term) (x : term) : Tac binding = try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" let instantiate_as (fa : term) (x : term) (s : string) : Tac binding = let b = instantiate fa x in rename_to b s private let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) : Lemma (requires (forall x. p x ==> phi)) (ensures phi) = () private let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) = focus (fun () -> try apply_lemma (`(sklem0 (`#b))); if ngoals () <> 1 then fail "no"; clear b; let bx = forall_intro () in let b' = implies_intro () in sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *) with | _ -> (acc, b) (* If the above failed, just return *) ) (* Skolemizes a given binder for an existential, returning the introduced new binders * and the skolemized formula. *) let sk_binder b = sk_binder' [] b let skolem () = let bs = vars_of_env (cur_env ()) in map sk_binder bs private val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) private let lemma_from_squash #a #b f x = let _ = f x in assert (b x) private let easy_fill () = let _ = repeat intro in (* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *) let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in smt () val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a let easy #a #x = x private let lem1_fa #a #pre #post
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x))) : Lemma (forall (x: a). pre x ==> post x)
[]
FStar.Tactics.V2.Logic.lem1_fa
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
$lem: (x: a -> FStar.Pervasives.Lemma (requires pre x) (ensures post x)) -> FStar.Pervasives.Lemma (ensures forall (x: a). pre x ==> post x)
{ "end_col": 27, "end_line": 350, "start_col": 42, "start_line": 346 }
FStar.Tactics.Effect.Tac
val left: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let left () : Tac unit = apply_lemma (`or_intro_1)
val left: Prims.unit -> Tac unit let left () : Tac unit =
true
null
false
apply_lemma (`or_intro_1)
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = ()
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val left: Prims.unit -> Tac unit
[]
FStar.Tactics.V2.Logic.left
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 29, "end_line": 238, "start_col": 4, "start_line": 238 }
Prims.Tot
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let easy #a #x = x
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a let easy #a #x =
false
null
false
x
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ "total" ]
[]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = () let witness (t : term) : Tac unit = apply_raw (`__witness); exact t private let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) (k : (x:t -> pred x -> squash goal)) : squash goal = FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) (* returns witness and proof as binders *) let elim_exists (t : term) : Tac (binding & binding) = apply_lemma (`(__elim_exists' (`#(t)))); let x = intro () in let pf = intro () in (x, pf) private let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) = () (* GM: annoying that this doesn't just work by SMT *) private let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) = FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) let instantiate (fa : term) (x : term) : Tac binding = try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" let instantiate_as (fa : term) (x : term) (s : string) : Tac binding = let b = instantiate fa x in rename_to b s private let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) : Lemma (requires (forall x. p x ==> phi)) (ensures phi) = () private let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) = focus (fun () -> try apply_lemma (`(sklem0 (`#b))); if ngoals () <> 1 then fail "no"; clear b; let bx = forall_intro () in let b' = implies_intro () in sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *) with | _ -> (acc, b) (* If the above failed, just return *) ) (* Skolemizes a given binder for an existential, returning the introduced new binders * and the skolemized formula. *) let sk_binder b = sk_binder' [] b let skolem () = let bs = vars_of_env (cur_env ()) in map sk_binder bs private val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) private let lemma_from_squash #a #b f x = let _ = f x in assert (b x) private let easy_fill () = let _ = repeat intro in (* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *) let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in smt ()
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
[]
FStar.Tactics.V2.Logic.easy
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a
{ "end_col": 18, "end_line": 341, "start_col": 17, "start_line": 341 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let skolem () = let bs = vars_of_env (cur_env ()) in map sk_binder bs
let skolem () =
true
null
false
let bs = vars_of_env (cur_env ()) in map sk_binder bs
{ "checked_file": "FStar.Tactics.V2.Logic.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Util.map", "FStar.Reflection.V2.Data.binding", "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.sk_binder", "FStar.Reflection.V2.Builtins.vars_of_env", "FStar.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = () let witness (t : term) : Tac unit = apply_raw (`__witness); exact t private let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) (k : (x:t -> pred x -> squash goal)) : squash goal = FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) (* returns witness and proof as binders *) let elim_exists (t : term) : Tac (binding & binding) = apply_lemma (`(__elim_exists' (`#(t)))); let x = intro () in let pf = intro () in (x, pf) private let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) = () (* GM: annoying that this doesn't just work by SMT *) private let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) = FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) let instantiate (fa : term) (x : term) : Tac binding = try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" let instantiate_as (fa : term) (x : term) (s : string) : Tac binding = let b = instantiate fa x in rename_to b s private let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) : Lemma (requires (forall x. p x ==> phi)) (ensures phi) = () private let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) = focus (fun () -> try apply_lemma (`(sklem0 (`#b))); if ngoals () <> 1 then fail "no"; clear b; let bx = forall_intro () in let b' = implies_intro () in sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *) with | _ -> (acc, b) (* If the above failed, just return *) ) (* Skolemizes a given binder for an existential, returning the introduced new binders * and the skolemized formula. *) let sk_binder b = sk_binder' [] b
false
false
FStar.Tactics.V2.Logic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val skolem : _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list (Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding))
[]
FStar.Tactics.V2.Logic.skolem
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list (Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding))
{ "end_col": 18, "end_line": 326, "start_col": 15, "start_line": 324 }